Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50019587" target="_blank" >RIV/62690094:18470/21:50019587 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1134/S1061920821040026" target="_blank" >https://link.springer.com/article/10.1134/S1061920821040026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1061920821040026" target="_blank" >10.1134/S1061920821040026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations
Popis výsledku v původním jazyce
This paper focuses on bifurcations that occur in the essential spectrum of certain non-Hermitian operators. We consider the eigenvalue problem for a self-adjoint elliptic differential operator in a multidimensional tube-like domain which is infinite along one dimension and can be bounded or unbounded in other dimensions. This self-adjoint eigenvalue problem is perturbed by a small hole cut out of the domain. The boundary of the hole is described by a non-Hermitian Robin-type boundary condition. The main result of the present paper states the existence and describes the properties of local meromorphic continuations of the resolvent of the operator in question through the essential spectrum. The continuations are constructed near the edge of the spectrum and in the vicinity of certain internal threshold points of the spectrum. Then we define the eigenvalues and resonances of the operator as the poles of these continuations and prove that both the edge and the internal thresholds bifurcate into eigenvalues and/or resonances. The total multiplicity of the eigenvalues and resonances bifurcating from internal thresholds can be up to twice larger than the multiplicity of the thresholds. In other words, the perturbation can increase the total multiplicity.
Název v anglickém jazyce
Bifurcations of Essential Spectra Generated by a Small Non-Hermitian Hole. I. Meromorphic Continuations
Popis výsledku anglicky
This paper focuses on bifurcations that occur in the essential spectrum of certain non-Hermitian operators. We consider the eigenvalue problem for a self-adjoint elliptic differential operator in a multidimensional tube-like domain which is infinite along one dimension and can be bounded or unbounded in other dimensions. This self-adjoint eigenvalue problem is perturbed by a small hole cut out of the domain. The boundary of the hole is described by a non-Hermitian Robin-type boundary condition. The main result of the present paper states the existence and describes the properties of local meromorphic continuations of the resolvent of the operator in question through the essential spectrum. The continuations are constructed near the edge of the spectrum and in the vicinity of certain internal threshold points of the spectrum. Then we define the eigenvalues and resonances of the operator as the poles of these continuations and prove that both the edge and the internal thresholds bifurcate into eigenvalues and/or resonances. The total multiplicity of the eigenvalues and resonances bifurcating from internal thresholds can be up to twice larger than the multiplicity of the thresholds. In other words, the perturbation can increase the total multiplicity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Russian journal of mathematical physics
ISSN
1061-9208
e-ISSN
1555-6638
Svazek periodika
28
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
416-433
Kód UT WoS článku
000727361800002
EID výsledku v databázi Scopus
2-s2.0-85120857037