Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00539479" target="_blank" >RIV/61389005:_____/21:00539479 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18470/21:50017892

  • Výsledek na webu

    <a href="https://doi.org/10.1111/sapm.12367" target="_blank" >https://doi.org/10.1111/sapm.12367</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/sapm.12367" target="_blank" >10.1111/sapm.12367</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations

  • Popis výsledku v původním jazyce

    We consider the operatornnH = H'- partial derivative(2)/partial derivative x(d)(2) on omega x Rnnsubject to the Dirichlet or Robin condition, where a domain omega subset of Rd-1 is bounded or unbounded. The symbol H ' stands for a second-order self-adjoint differential operator on omega such that the spectrum of the operator H ' contains several discrete eigenvalues Lambda j, j=1, ... ,m. These eigenvalues are thresholds in the essential spectrum of the operator H. We study how these thresholds bifurcate once we add a small localized perturbation epsilon L(epsilon) to the operator H, where epsilon is a small positive parameter and L(epsilon) is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator H in the vicinity of Lambda(j) for sufficiently small epsilon. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic nonself-adjoint perturbations and, in particular, to perturbations characterized by the parity-time (PT) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. As a case example, we employ our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.

  • Název v anglickém jazyce

    Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations

  • Popis výsledku anglicky

    We consider the operatornnH = H'- partial derivative(2)/partial derivative x(d)(2) on omega x Rnnsubject to the Dirichlet or Robin condition, where a domain omega subset of Rd-1 is bounded or unbounded. The symbol H ' stands for a second-order self-adjoint differential operator on omega such that the spectrum of the operator H ' contains several discrete eigenvalues Lambda j, j=1, ... ,m. These eigenvalues are thresholds in the essential spectrum of the operator H. We study how these thresholds bifurcate once we add a small localized perturbation epsilon L(epsilon) to the operator H, where epsilon is a small positive parameter and L(epsilon) is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator H in the vicinity of Lambda(j) for sufficiently small epsilon. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic nonself-adjoint perturbations and, in particular, to perturbations characterized by the parity-time (PT) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. As a case example, we employ our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studies in Applied Mathematics

  • ISSN

    0022-2526

  • e-ISSN

    1467-9590

  • Svazek periodika

    146

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    47

  • Strana od-do

    834-880

  • Kód UT WoS článku

    000608177800001

  • EID výsledku v databázi Scopus

    2-s2.0-85099380474