Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F21%3A00539479" target="_blank" >RIV/61389005:_____/21:00539479 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/21:50017892
Výsledek na webu
<a href="https://doi.org/10.1111/sapm.12367" target="_blank" >https://doi.org/10.1111/sapm.12367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/sapm.12367" target="_blank" >10.1111/sapm.12367</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations
Popis výsledku v původním jazyce
We consider the operatornnH = H'- partial derivative(2)/partial derivative x(d)(2) on omega x Rnnsubject to the Dirichlet or Robin condition, where a domain omega subset of Rd-1 is bounded or unbounded. The symbol H ' stands for a second-order self-adjoint differential operator on omega such that the spectrum of the operator H ' contains several discrete eigenvalues Lambda j, j=1, ... ,m. These eigenvalues are thresholds in the essential spectrum of the operator H. We study how these thresholds bifurcate once we add a small localized perturbation epsilon L(epsilon) to the operator H, where epsilon is a small positive parameter and L(epsilon) is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator H in the vicinity of Lambda(j) for sufficiently small epsilon. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic nonself-adjoint perturbations and, in particular, to perturbations characterized by the parity-time (PT) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. As a case example, we employ our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.
Název v anglickém jazyce
Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations
Popis výsledku anglicky
We consider the operatornnH = H'- partial derivative(2)/partial derivative x(d)(2) on omega x Rnnsubject to the Dirichlet or Robin condition, where a domain omega subset of Rd-1 is bounded or unbounded. The symbol H ' stands for a second-order self-adjoint differential operator on omega such that the spectrum of the operator H ' contains several discrete eigenvalues Lambda j, j=1, ... ,m. These eigenvalues are thresholds in the essential spectrum of the operator H. We study how these thresholds bifurcate once we add a small localized perturbation epsilon L(epsilon) to the operator H, where epsilon is a small positive parameter and L(epsilon) is an abstract, not necessarily symmetric operator. We show that these thresholds bifurcate into eigenvalues and resonances of the operator H in the vicinity of Lambda(j) for sufficiently small epsilon. We prove effective simple conditions determining the existence of these resonances and eigenvalues and find the leading terms of their asymptotic expansions. Our analysis applies to generic nonself-adjoint perturbations and, in particular, to perturbations characterized by the parity-time (PT) symmetry. Potential applications of our result embrace a broad class of physical systems governed by dispersive or diffractive effects. As a case example, we employ our findings to develop a scheme for a controllable generation of non-Hermitian optical states with normalizable power and real part of the complex-valued propagation constant lying in the continuum. The corresponding eigenfunctions can be interpreted as an optical generalization of bound states embedded in the continuum. For a particular example, the persistence of asymptotic expansions is confirmed with direct numerical evaluation of the perturbed spectrum.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in Applied Mathematics
ISSN
0022-2526
e-ISSN
1467-9590
Svazek periodika
146
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
47
Strana od-do
834-880
Kód UT WoS článku
000608177800001
EID výsledku v databázi Scopus
2-s2.0-85099380474