Spectra of operator pencils with small PT-symmetric periodic perturbation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017078" target="_blank" >RIV/62690094:18470/20:50017078 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.esaim-cocv.org/articles/cocv/pdf/2020/01/cocv190088.pdf" target="_blank" >https://www.esaim-cocv.org/articles/cocv/pdf/2020/01/cocv190088.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2019070" target="_blank" >10.1051/cocv/2019070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectra of operator pencils with small PT-symmetric periodic perturbation
Popis výsledku v původním jazyce
We study the spectrum of a quadratic operator pencil with a small P & xdcab;& x1d4af;& xdcaf;-symmetric periodic potential and a fixed localized potential. We show that the continuous spectrum has a band structure with bands on the imaginary axis separated by usual gaps, while on the real axis, there are no gaps but at certain points, the bands bifurcate into small parabolas in the complex plane. We study the isolated eigenvalues converging to the continuous spectrum. We show that they can emerge only in the aforementioned gaps or in the vicinities of the small parabolas, at most two isolated eigenvalues in each case. We establish sufficient conditions for the existence and absence of such eigenvalues. In the case of the existence, we prove that these eigenvalues depend analytically on a small parameter and we find the leading terms of their Taylor expansions. It is shown that the mechanism of the eigenvalue emergence is different from that for small localized perturbations studied in many previous works.
Název v anglickém jazyce
Spectra of operator pencils with small PT-symmetric periodic perturbation
Popis výsledku anglicky
We study the spectrum of a quadratic operator pencil with a small P & xdcab;& x1d4af;& xdcaf;-symmetric periodic potential and a fixed localized potential. We show that the continuous spectrum has a band structure with bands on the imaginary axis separated by usual gaps, while on the real axis, there are no gaps but at certain points, the bands bifurcate into small parabolas in the complex plane. We study the isolated eigenvalues converging to the continuous spectrum. We show that they can emerge only in the aforementioned gaps or in the vicinities of the small parabolas, at most two isolated eigenvalues in each case. We establish sufficient conditions for the existence and absence of such eigenvalues. In the case of the existence, we prove that these eigenvalues depend analytically on a small parameter and we find the leading terms of their Taylor expansions. It is shown that the mechanism of the eigenvalue emergence is different from that for small localized perturbations studied in many previous works.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS
ISSN
1292-8119
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
32
Strana od-do
"Article Number: 21"
Kód UT WoS článku
000518022500002
EID výsledku v databázi Scopus
2-s2.0-85082082711