Magnetic field induced structural changes in magnetite observed by resonant x-ray diffraction and Mossbauer spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017091" target="_blank" >RIV/62690094:18470/20:50017091 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00535672 RIV/00216208:11320/20:10422488
Výsledek na webu
<a href="https://hal.archives-ouvertes.fr/hal-02922539/file/2020_PRB_Fe3O4_Kolodziej.pdf" target="_blank" >https://hal.archives-ouvertes.fr/hal-02922539/file/2020_PRB_Fe3O4_Kolodziej.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.102.075126" target="_blank" >10.1103/PhysRevB.102.075126</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetic field induced structural changes in magnetite observed by resonant x-ray diffraction and Mossbauer spectroscopy
Popis výsledku v původním jazyce
When a magnetic field is applied to a single crystal of magnetite at 124 K > T > 50 K, the monoclinic c m axis, which is the easy magnetization axis, switches to one of the < 100 > cubic directions, nearest to the direction of the magnetic field, and the phenomenon known as an axis switching (AS) occurs. A global symmetry probe, resonant x-ray scattering, and a local probe, Mossbauer spectroscopy, are used to better understand the mechanism of axis switching. The behavior of three subsystems ordered below the Verwey transition temperature T-v, i.e., lattice distortion, an orbital, and charge orderings, was observed via resonant x-ray scattering as a function of an external magnetic field. This was preceded by calculation of selected peak intensities using the FDMNES code. The Mossbauer spectroscopy studies confirmed that the magnetic field triggers electronic rearrangements and atomic displacements. The structure observed after the process of axis switching is very similar to the one obtained after cooling below T-v with the magnetic field applied along one of the initial < 100 > cubic directions and distinct from the cooling in the absence of a magnetic field. From all the experimental observations of the phenomenon done so far, it is clear that AS starts from the fluctuations between octahedral iron orbitals that ultimately lead to the Verwey transition, but also to the higher-temperature trimeron dynamics. Therefore, further observation of the axis switching may be a key point to the understanding of a majority of strongly correlated electronic behavior in magnetite as well as in other transition metal oxides.
Název v anglickém jazyce
Magnetic field induced structural changes in magnetite observed by resonant x-ray diffraction and Mossbauer spectroscopy
Popis výsledku anglicky
When a magnetic field is applied to a single crystal of magnetite at 124 K > T > 50 K, the monoclinic c m axis, which is the easy magnetization axis, switches to one of the < 100 > cubic directions, nearest to the direction of the magnetic field, and the phenomenon known as an axis switching (AS) occurs. A global symmetry probe, resonant x-ray scattering, and a local probe, Mossbauer spectroscopy, are used to better understand the mechanism of axis switching. The behavior of three subsystems ordered below the Verwey transition temperature T-v, i.e., lattice distortion, an orbital, and charge orderings, was observed via resonant x-ray scattering as a function of an external magnetic field. This was preceded by calculation of selected peak intensities using the FDMNES code. The Mossbauer spectroscopy studies confirmed that the magnetic field triggers electronic rearrangements and atomic displacements. The structure observed after the process of axis switching is very similar to the one obtained after cooling below T-v with the magnetic field applied along one of the initial < 100 > cubic directions and distinct from the cooling in the absence of a magnetic field. From all the experimental observations of the phenomenon done so far, it is clear that AS starts from the fluctuations between octahedral iron orbitals that ultimately lead to the Verwey transition, but also to the higher-temperature trimeron dynamics. Therefore, further observation of the axis switching may be a key point to the understanding of a majority of strongly correlated electronic behavior in magnetite as well as in other transition metal oxides.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
"Article Number: 075126"
Kód UT WoS článku
000560604700002
EID výsledku v databázi Scopus
2-s2.0-85090116585