Shortest and straightest geodesics in sub-Riemannian geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017243" target="_blank" >RIV/62690094:18470/20:50017243 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0393044020300954?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0393044020300954?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2020.103713" target="_blank" >10.1016/j.geomphys.2020.103713</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shortest and straightest geodesics in sub-Riemannian geometry
Popis výsledku v původním jazyce
There are several different, but equivalent definitions of geodesics in a Riemannian manifold, based on two characteristic properties: geodesics as shortest curves and geodesics as straightest curves. They are generalized to sub-Riemannian manifolds, but become non-equivalent. We give an overview of different approaches to the definition, study and generalization of sub-Riemannian geodesics and discuss interrelations between different definitions. For Chaplygin transversally homogeneous sub-Riemannian manifold Q, we prove that straightest geodesics (defined as geodesics of the Schouten partial connection) coincide with shortest geodesics (defined as the projection to Q of integral curves (with trivial initial covector) of the sub-Riemannian Hamiltonian system). This gives a Hamiltonization of Chaplygin systems in non-holonomic mechanics. We consider a class of homogeneous sub-Riemannian manifolds, where straightest geodesics coincide with shortest geodesics, and give a description of all sub-Riemannian symmetric spaces in terms of affine symmetric spaces. (C) 2020 Published by Elsevier B.V.
Název v anglickém jazyce
Shortest and straightest geodesics in sub-Riemannian geometry
Popis výsledku anglicky
There are several different, but equivalent definitions of geodesics in a Riemannian manifold, based on two characteristic properties: geodesics as shortest curves and geodesics as straightest curves. They are generalized to sub-Riemannian manifolds, but become non-equivalent. We give an overview of different approaches to the definition, study and generalization of sub-Riemannian geodesics and discuss interrelations between different definitions. For Chaplygin transversally homogeneous sub-Riemannian manifold Q, we prove that straightest geodesics (defined as geodesics of the Schouten partial connection) coincide with shortest geodesics (defined as the projection to Q of integral curves (with trivial initial covector) of the sub-Riemannian Hamiltonian system). This gives a Hamiltonization of Chaplygin systems in non-holonomic mechanics. We consider a class of homogeneous sub-Riemannian manifolds, where straightest geodesics coincide with shortest geodesics, and give a description of all sub-Riemannian symmetric spaces in terms of affine symmetric spaces. (C) 2020 Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of geometry and physics
ISSN
0393-0440
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
"Article Number: 103713"
Kód UT WoS článku
000551647000003
EID výsledku v databázi Scopus
2-s2.0-85085325694