HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017270" target="_blank" >RIV/62690094:18470/20:50017270 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mathjournals.org/mmj/2020-020-002/" target="_blank" >http://www.mathjournals.org/mmj/2020-020-002/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17323/1609-4514-2020-20-2-217-256" target="_blank" >10.17323/1609-4514-2020-20-2-217-256</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE
Popis výsledku v původním jazyce
We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras h subset of sp(V), where V is the symplectic 4-dimensional space, and show that they satisfy h((k)) = 0 for all k > 0. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras g of symplectic vector fields on V to the description of graded transitive finite-dimensional subalgebras of the full prolongations p(1)((infinity)) and p(2)((infinity)), where p(1) and p(2) are the maximal parabolic subalgebras of sp(V). We then classify all such g subset of p(i)((infinity)), i = 1; 2, under some assumptions, and describe the associated 4-dimensional homogeneous symplectic manifolds (M = G/K, omega). We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.
Název v anglickém jazyce
HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE
Popis výsledku anglicky
We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras h subset of sp(V), where V is the symplectic 4-dimensional space, and show that they satisfy h((k)) = 0 for all k > 0. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras g of symplectic vector fields on V to the description of graded transitive finite-dimensional subalgebras of the full prolongations p(1)((infinity)) and p(2)((infinity)), where p(1) and p(2) are the maximal parabolic subalgebras of sp(V). We then classify all such g subset of p(i)((infinity)), i = 1; 2, under some assumptions, and describe the associated 4-dimensional homogeneous symplectic manifolds (M = G/K, omega). We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MOSCOW MATHEMATICAL JOURNAL
ISSN
1609-3321
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
40
Strana od-do
217-256
Kód UT WoS článku
000526932000001
EID výsledku v databázi Scopus
2-s2.0-85084201169