Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Chaos in Cartan foliations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017300" target="_blank" >RIV/62690094:18470/20:50017300 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aip.scitation.org/doi/10.1063/5.0021596" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0021596</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0021596" target="_blank" >10.1063/5.0021596</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Chaos in Cartan foliations

  • Popis výsledku v původním jazyce

    Chaotic foliations generalize Devaney&apos;s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.

  • Název v anglickém jazyce

    Chaos in Cartan foliations

  • Popis výsledku anglicky

    Chaotic foliations generalize Devaney&apos;s concept of chaos for dynamical systems. The property of a foliation to be chaotic is transversal, i.e, depends on the structure of the leaf space of the foliation. The transversal structure of a Cartan foliation is modeled on a Cartan manifold. The problem of investigating chaotic Cartan foliations is reduced to the corresponding problem for their holonomy pseudogroups of local automorphisms of transversal Cartan manifolds. For a Cartan foliation of a wide class, this problem is reduced to the corresponding problem for its global holonomy group, which is a countable discrete subgroup of the Lie automorphism group of an associated simply connected Cartan manifold. Several types of Cartan foliations that cannot be chaotic are indicated. Examples of chaotic Cartan foliations are constructed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CHAOS

  • ISSN

    1054-1500

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    "Article Number: 103116"

  • Kód UT WoS článku

    000585760600003

  • EID výsledku v databázi Scopus

    2-s2.0-85094572176