Interpolations between Jordanian twists, the Poincare-Weyl algebra and dispersion relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017433" target="_blank" >RIV/62690094:18470/20:50017433 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0217751X20500347" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0217751X20500347</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217751X20500347" target="_blank" >10.1142/S0217751X20500347</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolations between Jordanian twists, the Poincare-Weyl algebra and dispersion relations
Popis výsledku v původním jazyce
We consider a two-parameter family of Drinfeld twists generated from a simple Jordanian twist further twisted by 1-cochains. Twists from this family interpolate between two simple Jordanian twists. Relations between them are constructed and discussed. It is proved that there exists a one-parameter family of twists identical to a simple Jordanian twist. The twisted coalgebra, star product and coordinate realizations of the kappa-Minkowski non-commutative space-time are presented. Real forms of Jordanian deformations are also discussed. The method of similarity transformations is applied to the Poincare-Weyl Hopf algebra and two types of one-parameter families of dispersion relations are constructed. Mathematically equivalent deformations, that are related to nonlinear changes of symmetry generators and linked with similarity maps, may lead to differences in the description of physical phenomena.
Název v anglickém jazyce
Interpolations between Jordanian twists, the Poincare-Weyl algebra and dispersion relations
Popis výsledku anglicky
We consider a two-parameter family of Drinfeld twists generated from a simple Jordanian twist further twisted by 1-cochains. Twists from this family interpolate between two simple Jordanian twists. Relations between them are constructed and discussed. It is proved that there exists a one-parameter family of twists identical to a simple Jordanian twist. The twisted coalgebra, star product and coordinate realizations of the kappa-Minkowski non-commutative space-time are presented. Real forms of Jordanian deformations are also discussed. The method of similarity transformations is applied to the Poincare-Weyl Hopf algebra and two types of one-parameter families of dispersion relations are constructed. Mathematically equivalent deformations, that are related to nonlinear changes of symmetry generators and linked with similarity maps, may lead to differences in the description of physical phenomena.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
ISSN
0217-751X
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
15
Strana od-do
"Article Number: 2050034"
Kód UT WoS článku
000527642800002
EID výsledku v databázi Scopus
—