Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018057" target="_blank" >RIV/62690094:18470/21:50018057 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/ielx7/6287639/6514899/09411856.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/6287639/6514899/09411856.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3075247" target="_blank" >10.1109/ACCESS.2021.3075247</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning

  • Popis výsledku v původním jazyce

    This article develops a special decomposition methodology for the traditional optimal power flow which facilitates optimal integration of stochastic distributed energy resources in power distribution systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of the conventional linear programming approach while avoiding the challenges associated with the stochastic nature of the energy resources and loads. It does so using machine learning algorithms employed for two crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the electric power transaction optimality. Second, the optimal distributed energy resources are obtained by the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized Critic. It accelerates conventional linear programming approach by considering a reduced set of resources and their constraints. The proposed method is demonstrated through a real-time balancing electricity market constructed over the IEEE 123-bus system and enhanced using price signals based on distribution locational marginal prices. This application clearly shows the ability of the new approach to effectively coordinate multiple distribution system entities while maintaining system security constraints.

  • Název v anglickém jazyce

    Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning

  • Popis výsledku anglicky

    This article develops a special decomposition methodology for the traditional optimal power flow which facilitates optimal integration of stochastic distributed energy resources in power distribution systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of the conventional linear programming approach while avoiding the challenges associated with the stochastic nature of the energy resources and loads. It does so using machine learning algorithms employed for two crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the electric power transaction optimality. Second, the optimal distributed energy resources are obtained by the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized Critic. It accelerates conventional linear programming approach by considering a reduced set of resources and their constraints. The proposed method is demonstrated through a real-time balancing electricity market constructed over the IEEE 123-bus system and enhanced using price signals based on distribution locational marginal prices. This application clearly shows the ability of the new approach to effectively coordinate multiple distribution system entities while maintaining system security constraints.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    duben

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    63059-63072

  • Kód UT WoS článku

    000645841100001

  • EID výsledku v databázi Scopus

    2-s2.0-85104629932