Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018057" target="_blank" >RIV/62690094:18470/21:50018057 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/ielx7/6287639/6514899/09411856.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/6287639/6514899/09411856.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3075247" target="_blank" >10.1109/ACCESS.2021.3075247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning
Popis výsledku v původním jazyce
This article develops a special decomposition methodology for the traditional optimal power flow which facilitates optimal integration of stochastic distributed energy resources in power distribution systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of the conventional linear programming approach while avoiding the challenges associated with the stochastic nature of the energy resources and loads. It does so using machine learning algorithms employed for two crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the electric power transaction optimality. Second, the optimal distributed energy resources are obtained by the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized Critic. It accelerates conventional linear programming approach by considering a reduced set of resources and their constraints. The proposed method is demonstrated through a real-time balancing electricity market constructed over the IEEE 123-bus system and enhanced using price signals based on distribution locational marginal prices. This application clearly shows the ability of the new approach to effectively coordinate multiple distribution system entities while maintaining system security constraints.
Název v anglickém jazyce
Distributed Optimization for Distribution Grids With Stochastic DER Using Multi-Agent Deep Reinforcement Learning
Popis výsledku anglicky
This article develops a special decomposition methodology for the traditional optimal power flow which facilitates optimal integration of stochastic distributed energy resources in power distribution systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of the conventional linear programming approach while avoiding the challenges associated with the stochastic nature of the energy resources and loads. It does so using machine learning algorithms employed for two crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the electric power transaction optimality. Second, the optimal distributed energy resources are obtained by the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized Critic. It accelerates conventional linear programming approach by considering a reduced set of resources and their constraints. The proposed method is demonstrated through a real-time balancing electricity market constructed over the IEEE 123-bus system and enhanced using price signals based on distribution locational marginal prices. This application clearly shows the ability of the new approach to effectively coordinate multiple distribution system entities while maintaining system security constraints.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
duben
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
63059-63072
Kód UT WoS článku
000645841100001
EID výsledku v databázi Scopus
2-s2.0-85104629932