Dimension-Wise Particle Swarm Optimization: Evaluation and Comparative Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018182" target="_blank" >RIV/62690094:18470/21:50018182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/11/13/6201" target="_blank" >https://www.mdpi.com/2076-3417/11/13/6201</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11136201" target="_blank" >10.3390/app11136201</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dimension-Wise Particle Swarm Optimization: Evaluation and Comparative Analysis
Popis výsledku v původním jazyce
This article evaluates a recently introduced algorithm that adjusts each dimension in particle swarm optimization semi-independently and compares it with the traditional particle swarm optimization. In addition, the comparison is extended to differential evolution and genetic algorithm. This presented comparative study provides a clear exposition of the effects introduced by the proposed algorithm. Performance of all evaluated optimizers is evaluated based on how well they perform in finding the global minima of 24 multi-dimensional benchmark functions, each having 7, 14, or 21 dimensions. Each algorithm is put through a session of self-tuning with 100 iterations to ensure convergence of their respective optimization parameters. The results confirm that the new variant is a significant improvement over the traditional algorithm. It also obtained notably better results than differential evolution when applied to problems with high-dimensional spaces relative to the number of available particles.
Název v anglickém jazyce
Dimension-Wise Particle Swarm Optimization: Evaluation and Comparative Analysis
Popis výsledku anglicky
This article evaluates a recently introduced algorithm that adjusts each dimension in particle swarm optimization semi-independently and compares it with the traditional particle swarm optimization. In addition, the comparison is extended to differential evolution and genetic algorithm. This presented comparative study provides a clear exposition of the effects introduced by the proposed algorithm. Performance of all evaluated optimizers is evaluated based on how well they perform in finding the global minima of 24 multi-dimensional benchmark functions, each having 7, 14, or 21 dimensions. Each algorithm is put through a session of self-tuning with 100 iterations to ensure convergence of their respective optimization parameters. The results confirm that the new variant is a significant improvement over the traditional algorithm. It also obtained notably better results than differential evolution when applied to problems with high-dimensional spaces relative to the number of available particles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
31
Strana od-do
"Article Number: 6201"
Kód UT WoS článku
000672290200001
EID výsledku v databázi Scopus
—