Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018387" target="_blank" >RIV/62690094:18470/21:50018387 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2021.101724" target="_blank" >10.1016/j.difgeo.2021.101724</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry
Popis výsledku v původním jazyce
We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry
Popis výsledku anglicky
We study Lorentzian manifolds (M, g) of dimension n >= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -> S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS
ISSN
0926-2245
e-ISSN
—
Svazek periodika
75
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
"Article Number: 101724"
Kód UT WoS článku
000632451300011
EID výsledku v databázi Scopus
2-s2.0-85100743702