Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018387" target="_blank" >RIV/62690094:18470/21:50018387 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.difgeo.2021.101724" target="_blank" >10.1016/j.difgeo.2021.101724</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

  • Popis výsledku v původním jazyce

    We study Lorentzian manifolds (M, g) of dimension n &gt;= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -&gt; S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

  • Popis výsledku anglicky

    We study Lorentzian manifolds (M, g) of dimension n &gt;= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -&gt; S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS

  • ISSN

    0926-2245

  • e-ISSN

  • Svazek periodika

    75

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    32

  • Strana od-do

    "Article Number: 101724"

  • Kód UT WoS článku

    000632451300011

  • EID výsledku v databázi Scopus

    2-s2.0-85100743702