On Occurrence of Resonances from Multiple Eigenvalues of the Schrödinger Operator in a Cylinder with Distant Perturbations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018617" target="_blank" >RIV/62690094:18470/21:50018617 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10958-021-05532-x" target="_blank" >https://link.springer.com/article/10.1007/s10958-021-05532-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-021-05532-x" target="_blank" >10.1007/s10958-021-05532-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Occurrence of Resonances from Multiple Eigenvalues of the Schrödinger Operator in a Cylinder with Distant Perturbations
Popis výsledku v původním jazyce
In this paper, the Schrödinger operator with a localized potential in a multidimensional cylinder is considered. The boundary of the cylinder is split into three parts, two of which are “sleeves” going to infinity, and the third (central) part is located between them. On the sleeves and the central part, respectively, the Neumann and Dirichlet boundary conditions are posed. We examine the situation where the distance between the sleeves increases. We assume that the same Schrödinger operator in the same cylinder endowed with the Dirichlet condition on the whole boundary has an isolated double eigenvalue. We show that for a sufficiently large distance between the sleeves, this double eigenvalue splits into a pair of resonances of the original operator. For these resonances, we explicitly obtain the first terms of their asymptotic expansions and describe the behavior of the imaginary part of the resonances. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
On Occurrence of Resonances from Multiple Eigenvalues of the Schrödinger Operator in a Cylinder with Distant Perturbations
Popis výsledku anglicky
In this paper, the Schrödinger operator with a localized potential in a multidimensional cylinder is considered. The boundary of the cylinder is split into three parts, two of which are “sleeves” going to infinity, and the third (central) part is located between them. On the sleeves and the central part, respectively, the Neumann and Dirichlet boundary conditions are posed. We examine the situation where the distance between the sleeves increases. We assume that the same Schrödinger operator in the same cylinder endowed with the Dirichlet condition on the whole boundary has an isolated double eigenvalue. We show that for a sufficiently large distance between the sleeves, this double eigenvalue splits into a pair of resonances of the original operator. For these resonances, we explicitly obtain the first terms of their asymptotic expansions and describe the behavior of the imaginary part of the resonances. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Svazek periodika
258
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85115121070