Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sentimental Analysis of COVID-19 Related Messages in Social Networks by Involving an N-Gram Stacked Autoencoder Integrated in an Ensemble Learning Scheme

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018822" target="_blank" >RIV/62690094:18470/21:50018822 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/21/22/7582" target="_blank" >https://www.mdpi.com/1424-8220/21/22/7582</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21227582" target="_blank" >10.3390/s21227582</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sentimental Analysis of COVID-19 Related Messages in Social Networks by Involving an N-Gram Stacked Autoencoder Integrated in an Ensemble Learning Scheme

  • Popis výsledku v původním jazyce

    The current population worldwide extensively uses social media to share thoughts, societal issues, and personal concerns. Social media can be viewed as an intelligent platform that can be augmented with a capability to analyze and predict various issues such as business needs, environmental needs, election trends (polls), governmental needs, etc. This has motivated us to initiate a comprehensive search of the COVID-19 pandemic-related views and opinions amongst the population on Twitter. The basic training data have been collected from Twitter posts. On this basis, we have developed research involving ensemble deep learning techniques to reach a better prediction of the future evolutions of views in Twitter when compared to previous works that do the same. First, feature extraction is performed through an N-gram stacked autoencoder supervised learning algorithm. The extracted features are then involved in a classification and prediction involving an ensemble fusion scheme of selected machine learning techniques such as decision tree (DT), support vector machine (SVM), random forest (RF), and K-nearest neighbour (KNN). all individual results are combined/fused for a better prediction by using both mean and mode techniques. Our proposed scheme of an N-gram stacked encoder integrated in an ensemble machine learning scheme outperforms all the other existing competing techniques such unigram autoencoder, bigram autoencoder, etc. Our experimental results have been obtained from a comprehensive evaluation involving a dataset extracted from open-source data available from Twitter that were filtered by using the keywords &quot;covid &quot;, &quot;covid19 &quot;, &quot;coronavirus &quot;, &quot;covid-19 &quot;, &quot;sarscov2 &quot;, and &quot;covid_19 &quot;.

  • Název v anglickém jazyce

    Sentimental Analysis of COVID-19 Related Messages in Social Networks by Involving an N-Gram Stacked Autoencoder Integrated in an Ensemble Learning Scheme

  • Popis výsledku anglicky

    The current population worldwide extensively uses social media to share thoughts, societal issues, and personal concerns. Social media can be viewed as an intelligent platform that can be augmented with a capability to analyze and predict various issues such as business needs, environmental needs, election trends (polls), governmental needs, etc. This has motivated us to initiate a comprehensive search of the COVID-19 pandemic-related views and opinions amongst the population on Twitter. The basic training data have been collected from Twitter posts. On this basis, we have developed research involving ensemble deep learning techniques to reach a better prediction of the future evolutions of views in Twitter when compared to previous works that do the same. First, feature extraction is performed through an N-gram stacked autoencoder supervised learning algorithm. The extracted features are then involved in a classification and prediction involving an ensemble fusion scheme of selected machine learning techniques such as decision tree (DT), support vector machine (SVM), random forest (RF), and K-nearest neighbour (KNN). all individual results are combined/fused for a better prediction by using both mean and mode techniques. Our proposed scheme of an N-gram stacked encoder integrated in an ensemble machine learning scheme outperforms all the other existing competing techniques such unigram autoencoder, bigram autoencoder, etc. Our experimental results have been obtained from a comprehensive evaluation involving a dataset extracted from open-source data available from Twitter that were filtered by using the keywords &quot;covid &quot;, &quot;covid19 &quot;, &quot;coronavirus &quot;, &quot;covid-19 &quot;, &quot;sarscov2 &quot;, and &quot;covid_19 &quot;.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SENSORS

  • ISSN

    1424-8220

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    "Article Number: 7582"

  • Kód UT WoS článku

    000724454900001

  • EID výsledku v databázi Scopus

    2-s2.0-85118926540