Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50019586" target="_blank" >RIV/62690094:18470/21:50019586 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1070/SM9435" target="_blank" >https://iopscience.iop.org/article/10.1070/SM9435</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1070/SM9435" target="_blank" >10.1070/SM9435</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition
Popis výsledku v původním jazyce
A boundary value problem for a second-order elliptic equation with variable coefficients is considered in a multidimensional domain which is perforated by small holes along a prescribed manifold. Minimal natural conditions are imposed on the holes. In particular, all of these are assumed to be of approximately the same size and have a prescribed minimal distance to neighbouring holes, which is also a small parameter. The shape of the holes and their distribution along the manifold are arbitrary. The holes are divided between two sets in an arbitrary way. The Dirichlet condition is imposed on the boundaries of holes in the first set and a nonlinear Robin boundary condition is imposed on the boundaries of holes in the second. The sizes and distribution of holes with the Dirichlet condition satisfy a simple and easily verifiable condition which ensures that these holes disappear after homogenization and a Dirichlet condition on the manifold in question arises instead. We prove that the solution of the perturbed problem converges to the solution of the homogenized one in the W 1/2-norm uniformly with respect to the right-hand side of the equation, and an estimate for the rate of convergence that is sharp in order is deduced. The full asymptotic solution of the perturbed problem is also constructed in the case when the holes form a periodic set arranged along a prescribed hyperplane. Bibliography: 32 titles.
Název v anglickém jazyce
Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition
Popis výsledku anglicky
A boundary value problem for a second-order elliptic equation with variable coefficients is considered in a multidimensional domain which is perforated by small holes along a prescribed manifold. Minimal natural conditions are imposed on the holes. In particular, all of these are assumed to be of approximately the same size and have a prescribed minimal distance to neighbouring holes, which is also a small parameter. The shape of the holes and their distribution along the manifold are arbitrary. The holes are divided between two sets in an arbitrary way. The Dirichlet condition is imposed on the boundaries of holes in the first set and a nonlinear Robin boundary condition is imposed on the boundaries of holes in the second. The sizes and distribution of holes with the Dirichlet condition satisfy a simple and easily verifiable condition which ensures that these holes disappear after homogenization and a Dirichlet condition on the manifold in question arises instead. We prove that the solution of the perturbed problem converges to the solution of the homogenized one in the W 1/2-norm uniformly with respect to the right-hand side of the equation, and an estimate for the rate of convergence that is sharp in order is deduced. The full asymptotic solution of the perturbed problem is also constructed in the case when the holes form a periodic set arranged along a prescribed hyperplane. Bibliography: 32 titles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SBORNIK MATHEMATICS
ISSN
1064-5616
e-ISSN
1468-4802
Svazek periodika
212
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
54
Strana od-do
1068-1121
Kód UT WoS článku
000707456500001
EID výsledku v databázi Scopus
—