Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020477" target="_blank" >RIV/62690094:18470/23:50020477 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13324-022-00765-8" target="_blank" >https://link.springer.com/article/10.1007/s13324-022-00765-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-022-00765-8" target="_blank" >10.1007/s13324-022-00765-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit
Popis výsledku v původním jazyce
We consider a general second order linear elliptic equation in a finely perforated domain. The shapes of cavities and their distribution in the domain are arbitrary and non-periodic; they are supposed to satisfy minimal natural geometric conditions. On the boundaries of the cavities we impose either the Dirichlet or a nonlinear Robin condition; the choice of the type of the boundary condition for each cavity is arbitrary. Then we suppose that for some cavities the nonlinear Robin condition is sign-definite in certain sense. Provided such cavities and ones with the Dirichlet condition are distributed rather densely in the domain and the characteristic sizes of the cavities and the minimal distances between the cavities satisfy certain simple condition, we show that a solution to our problem tends to zero as the perforation becomes finer. Our main result are order sharp estimates for the L-2- and W-2(1)-norms of the solution uniform in the L-2-norm of the right hand side in the equation.
Název v anglickém jazyce
Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit
Popis výsledku anglicky
We consider a general second order linear elliptic equation in a finely perforated domain. The shapes of cavities and their distribution in the domain are arbitrary and non-periodic; they are supposed to satisfy minimal natural geometric conditions. On the boundaries of the cavities we impose either the Dirichlet or a nonlinear Robin condition; the choice of the type of the boundary condition for each cavity is arbitrary. Then we suppose that for some cavities the nonlinear Robin condition is sign-definite in certain sense. Provided such cavities and ones with the Dirichlet condition are distributed rather densely in the domain and the characteristic sizes of the cavities and the minimal distances between the cavities satisfy certain simple condition, we show that a solution to our problem tends to zero as the perforation becomes finer. Our main result are order sharp estimates for the L-2- and W-2(1)-norms of the solution uniform in the L-2-norm of the right hand side in the equation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-18739S" target="_blank" >GA22-18739S: Asymptotická a spektrální analýza operátorů v matematické fyzice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
1664-235X
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
34
Strana od-do
"Article Number: 5"
Kód UT WoS článku
000889746200001
EID výsledku v databázi Scopus
2-s2.0-85142723111