Construction of self-adjoint differential operators with prescribed spectral properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019218" target="_blank" >RIV/62690094:18470/22:50019218 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mana.201900491" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mana.201900491</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201900491" target="_blank" >10.1002/mana.201900491</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Construction of self-adjoint differential operators with prescribed spectral properties
Popis výsledku v původním jazyce
In this expository article some spectral properties of self-adjoint differential operators are investigated. The main objective is to illustrate and (partly) review how one can construct domains or potentials such that the essential or discrete spectrum of a Schrodinger operator of a certain type (e.g. the Neumann Laplacian) coincides with a predefined subset of the real line. Another aim is to emphasize that the spectrum of a differential operator on a bounded domain or bounded interval is not necessarily discrete, that is, eigenvalues of infinite multiplicity, continuous spectrum, and eigenvalues embedded in the continuous spectrum may be present. This unusual spectral effect is, very roughly speaking, caused by (at least) one of the following three reasons: The bounded domain has a rough boundary, the potential is singular, or the boundary condition is nonstandard. In three separate explicit constructions we demonstrate how each of these possibilities leads to a Schrodinger operator with prescribed essential spectrum.
Název v anglickém jazyce
Construction of self-adjoint differential operators with prescribed spectral properties
Popis výsledku anglicky
In this expository article some spectral properties of self-adjoint differential operators are investigated. The main objective is to illustrate and (partly) review how one can construct domains or potentials such that the essential or discrete spectrum of a Schrodinger operator of a certain type (e.g. the Neumann Laplacian) coincides with a predefined subset of the real line. Another aim is to emphasize that the spectrum of a differential operator on a bounded domain or bounded interval is not necessarily discrete, that is, eigenvalues of infinite multiplicity, continuous spectrum, and eigenvalues embedded in the continuous spectrum may be present. This unusual spectral effect is, very roughly speaking, caused by (at least) one of the following three reasons: The bounded domain has a rough boundary, the potential is singular, or the boundary condition is nonstandard. In three separate explicit constructions we demonstrate how each of these possibilities leads to a Schrodinger operator with prescribed essential spectrum.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Svazek periodika
295
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
33
Strana od-do
1063-1095
Kód UT WoS článku
000791828800001
EID výsledku v databázi Scopus
2-s2.0-85129456788