Differential geometry of SO*(2n)-type structures-integrability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019286" target="_blank" >RIV/62690094:18470/22:50019286 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/22:00129117
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13324-022-00701-w" target="_blank" >https://link.springer.com/article/10.1007/s13324-022-00701-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-022-00701-w" target="_blank" >10.1007/s13324-022-00701-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential geometry of SO*(2n)-type structures-integrability
Popis výsledku v původním jazyce
We study almost hypercomplex skew-Hermitian structures and almost quaternionic skew-Hermitian structures, as the geometric structures underlying SO*(2n)- and SO*(2n)Sp(1)-structures, respectively. The corresponding intrinsic torsions were computed in the previous article in this series, and the algebraic types of the geometries were derived, together with the minimal adapted connections (with respect to certain normalizations conditions). Here we use these results to present the related first-order integrability conditions in terms of the algebraic types and other constructions. In particular, we use distinguished connections to provide a more geometric interpretation of the presented integrability conditions and highlight some features of certain classes. The second main contribution of this note is the illustration of several specific types of such geometries via a variety of examples. We use the bundle of Weyl structures and describe examples of SO*(2n)Sp(1)-structures in terms of functorial constructions in the context of parabolic geometries.
Název v anglickém jazyce
Differential geometry of SO*(2n)-type structures-integrability
Popis výsledku anglicky
We study almost hypercomplex skew-Hermitian structures and almost quaternionic skew-Hermitian structures, as the geometric structures underlying SO*(2n)- and SO*(2n)Sp(1)-structures, respectively. The corresponding intrinsic torsions were computed in the previous article in this series, and the algebraic types of the geometries were derived, together with the minimal adapted connections (with respect to certain normalizations conditions). Here we use these results to present the related first-order integrability conditions in terms of the algebraic types and other constructions. In particular, we use distinguished connections to provide a more geometric interpretation of the presented integrability conditions and highlight some features of certain classes. The second main contribution of this note is the illustration of several specific types of such geometries via a variety of examples. We use the bundle of Weyl structures and describe examples of SO*(2n)Sp(1)-structures in terms of functorial constructions in the context of parabolic geometries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
1664-235X
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
52
Strana od-do
"Article Number: 93"
Kód UT WoS článku
000817297300001
EID výsledku v databázi Scopus
2-s2.0-85132967111