Differential geometry of SO*(2n)-type structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019715" target="_blank" >RIV/62690094:18470/22:50019715 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/22:00127021
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10231-022-01212-y" target="_blank" >https://link.springer.com/article/10.1007/s10231-022-01212-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-022-01212-y" target="_blank" >10.1007/s10231-022-01212-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential geometry of SO*(2n)-type structures
Popis výsledku v původním jazyce
We study 4n-dimensional smooth manifolds admitting a SO*(2n)- or a SO*(2n) Sp (1)-structure, where SO*(2n) is the quaternionic real form of SO(2n, C). We show that such G-structures, called almost hypercomplex/quaternionic skew-Hermitian structures, form the symplectic analogue of the better known almost hypercomplex/quaternionic-Hermitian structures (hH/qH for short). We present several equivalent definitions of SO*(2n)-and SO*(2n) Sp (1)-structures in terms of almost symplectic forms compatible with an almost hypercomplex/quaternionic structure, a quaternionic skew-Hermitian form, or a symmetric 4-tensor, the latter establishing the counterpart of the fundamental 4-form in almost hH/qH geometries. The intrinsic torsion of such structures is presented in terms of Salamon's EH-formalism, and the algebraic types of the corresponding geometries are classified. We construct explicit adapted connections to our G-structures and specify certain normalization conditions, under which these connections become minimal Finally, we present the classification of symmetric spaces KIL with K semisimple admitting an invariant torsion-free SO*(2n) Sp (1)-structure. This paper is the first in a series aiming at the description of the differential geometry of SO*(2n)- and SO*(2n) Sp (1)-structures.
Název v anglickém jazyce
Differential geometry of SO*(2n)-type structures
Popis výsledku anglicky
We study 4n-dimensional smooth manifolds admitting a SO*(2n)- or a SO*(2n) Sp (1)-structure, where SO*(2n) is the quaternionic real form of SO(2n, C). We show that such G-structures, called almost hypercomplex/quaternionic skew-Hermitian structures, form the symplectic analogue of the better known almost hypercomplex/quaternionic-Hermitian structures (hH/qH for short). We present several equivalent definitions of SO*(2n)-and SO*(2n) Sp (1)-structures in terms of almost symplectic forms compatible with an almost hypercomplex/quaternionic structure, a quaternionic skew-Hermitian form, or a symmetric 4-tensor, the latter establishing the counterpart of the fundamental 4-form in almost hH/qH geometries. The intrinsic torsion of such structures is presented in terms of Salamon's EH-formalism, and the algebraic types of the corresponding geometries are classified. We construct explicit adapted connections to our G-structures and specify certain normalization conditions, under which these connections become minimal Finally, we present the classification of symmetric spaces KIL with K semisimple admitting an invariant torsion-free SO*(2n) Sp (1)-structure. This paper is the first in a series aiming at the description of the differential geometry of SO*(2n)- and SO*(2n) Sp (1)-structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14466Y" target="_blank" >GJ19-14466Y: Speciální metriky v supergravitaci a nové G-struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Svazek periodika
201
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
60
Strana od-do
2603-2662
Kód UT WoS článku
000855992300001
EID výsledku v databázi Scopus
2-s2.0-85138554325