The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423036" target="_blank" >RIV/00216208:11320/20:10423036 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6zYxXcsT05" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6zYxXcsT05</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40315-020-00322-z" target="_blank" >10.1007/s40315-020-00322-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis
Popis výsledku v původním jazyce
As is the case for the theory of holomorphic functions in the complex plane, the Cauchy Integral Formula has proven to be a cornerstone of Clifford analysis, the monogenic function theory in higher dimensional euclidean space. In recent years, several new branches of Clifford analysis have emerged. Similarly as to how hermitian Clifford analysis in euclidean space R^2n of even dimension emerged as a refinement of euclidean Clifford analysis by introducing a complex structure on R^2n, quaternionic Clifford analysis arose as a further refinement by introducing a so-called hypercomplex structure Q, i.e. three complex structures (I, J, K) which follow the quaternionic multiplication rules, on R^4p, the dimension now being a fourfold. Two, respectively four, differential operators lead to first order systems invariant under the action of the respective symmetry groups U(n) and Sp(p). Their simultaneous null solutions are called hermitianmonogenic and quaternionicmonogenic functions respectively. In this contribution we further elaborate on the Cauchy Integral Formula for hermitian and quaternionic monogenic functions. Moreover we establish Caychy integral formulae for osp(4|2)-monogenic functions, the newest branch of Clifford analysis refining quaternionic monogenicity by taking the underlying symplectic symmetry fully into account.
Název v anglickém jazyce
The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis
Popis výsledku anglicky
As is the case for the theory of holomorphic functions in the complex plane, the Cauchy Integral Formula has proven to be a cornerstone of Clifford analysis, the monogenic function theory in higher dimensional euclidean space. In recent years, several new branches of Clifford analysis have emerged. Similarly as to how hermitian Clifford analysis in euclidean space R^2n of even dimension emerged as a refinement of euclidean Clifford analysis by introducing a complex structure on R^2n, quaternionic Clifford analysis arose as a further refinement by introducing a so-called hypercomplex structure Q, i.e. three complex structures (I, J, K) which follow the quaternionic multiplication rules, on R^4p, the dimension now being a fourfold. Two, respectively four, differential operators lead to first order systems invariant under the action of the respective symmetry groups U(n) and Sp(p). Their simultaneous null solutions are called hermitianmonogenic and quaternionicmonogenic functions respectively. In this contribution we further elaborate on the Cauchy Integral Formula for hermitian and quaternionic monogenic functions. Moreover we establish Caychy integral formulae for osp(4|2)-monogenic functions, the newest branch of Clifford analysis refining quaternionic monogenicity by taking the underlying symplectic symmetry fully into account.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11473S" target="_blank" >GA20-11473S: Symetrie a invariance v analýze, geometrickém modelování a teorii optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Methods and Function Theory
ISSN
1617-9447
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
34
Strana od-do
431-464
Kód UT WoS článku
000542081500001
EID výsledku v databázi Scopus
2-s2.0-85086777972