Reductive homogeneous Lorentzian manifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019326" target="_blank" >RIV/62690094:18470/22:50019326 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0926224522000857?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224522000857?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2022.101932" target="_blank" >10.1016/j.difgeo.2022.101932</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reductive homogeneous Lorentzian manifolds
Popis výsledku v původním jazyce
We study homogeneous Lorentzian manifolds M = G/L of a connected reductive Lie group Gmodulo a connected reductive subgroup L, under the assumption that M is (almost) G-effective and the isotropy representation is totally reducible. We show that the description of such manifolds reduces to the case of semisimple Lie groups G. Moreover, we prove that such a homogeneous space is reductive. We describe all totally reducible subgroups of the Lorentz group and divide them into three types. The subgroups of Type Iare compact, while the subgroups of Type II and Type III are non-compact. The explicit description of the corresponding homogeneous Lorentzian spaces of Type II and III(under some mild assumption) is given. We also show that the description of Lorentz homogeneous manifolds M = G/L of Type I reduces to the description of subgroups L such that M = G/Lis an admissible manifold, i.e., an effective homogeneous manifold that admits an invariant Lorentzian metric. Whenever the subgroup Lis a maximal subgroup with these properties, we call such a manifold minimal admissible. We classify all minimal admissible homogeneous manifolds G/L of a compact semisimple Lie group Ga nd describe all invariant Lorentzian metrics on them. (C) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Reductive homogeneous Lorentzian manifolds
Popis výsledku anglicky
We study homogeneous Lorentzian manifolds M = G/L of a connected reductive Lie group Gmodulo a connected reductive subgroup L, under the assumption that M is (almost) G-effective and the isotropy representation is totally reducible. We show that the description of such manifolds reduces to the case of semisimple Lie groups G. Moreover, we prove that such a homogeneous space is reductive. We describe all totally reducible subgroups of the Lorentz group and divide them into three types. The subgroups of Type Iare compact, while the subgroups of Type II and Type III are non-compact. The explicit description of the corresponding homogeneous Lorentzian spaces of Type II and III(under some mild assumption) is given. We also show that the description of Lorentz homogeneous manifolds M = G/L of Type I reduces to the description of subgroups L such that M = G/Lis an admissible manifold, i.e., an effective homogeneous manifold that admits an invariant Lorentzian metric. Whenever the subgroup Lis a maximal subgroup with these properties, we call such a manifold minimal admissible. We classify all minimal admissible homogeneous manifolds G/L of a compact semisimple Lie group Ga nd describe all invariant Lorentzian metrics on them. (C) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
1872-6984
Svazek periodika
84
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
"Article Number: 101932"
Kód UT WoS článku
000838919700001
EID výsledku v databázi Scopus
2-s2.0-85135533295