Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Shrinkage Linear with Quadratic Gaussian Discriminant Analysis for Big Data Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019404" target="_blank" >RIV/62690094:18470/22:50019404 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/iasc/v34n3/47913" target="_blank" >https://www.techscience.com/iasc/v34n3/47913</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/iasc.2022.024539" target="_blank" >10.32604/iasc.2022.024539</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Shrinkage Linear with Quadratic Gaussian Discriminant Analysis for Big Data Classification

  • Popis výsledku v původním jazyce

    Generation of massive data is increasing in big data industries due tothe evolution of modern technologies. The big data industries include data sourcefrom sensors, Internet of Things, digital and social media. In particular, these bigdata systems consist of data extraction, preprocessing, integration, analysis, andvisualization mechanism. The data encountered from the sources are redundant,incomplete and conflict. Moreover, in real time applications, it is a tedious processfor the interpretation of all the data from different sources. In this paper, the gath-ered data are preprocessed to handle the issues such as redundant, incomplete andconflict. For that, it is proposed to have a generalized dimensionality reductiontechnique called Shrinkage Linear Discriminate Analysis (SLDA). As a result,the Shrinkage Linear Discriminate Analysis (LDA) will improve the performanceof the classifier with generalization. Even though, dimensionality reduction sys-tems improve the performance of the classifier, the irrelevant features getdegraded by the performance of the system further. Hence, the relevant and themost important features are selected using Pearson correlation-based feature selec-tion technique which selects the subset of correlated features for improving theperformance of the classification system. The selected features are classified usingthe proposed Quadratic-Gaussian Discriminant Analysis (QGDA) classifier. Theproposed evolution techniques are tested with the localization and the cover datasets from machine learning University of California Irvine (UCI) repository. Inaddition to that, the proposed techniques on datasets are evaluated with the eva-luation metrics and compared to the other similar methods which prove the effi-ciency of the proposed classification system. It has achieved better performance.The acquired accuracy is over 91% for all the experiment on these datasets. Basedon the results evaluated in terms of training percentage and mapper, it is meaning-ful to conclude that the proposed method could be used for big data classification.

  • Název v anglickém jazyce

    Shrinkage Linear with Quadratic Gaussian Discriminant Analysis for Big Data Classification

  • Popis výsledku anglicky

    Generation of massive data is increasing in big data industries due tothe evolution of modern technologies. The big data industries include data sourcefrom sensors, Internet of Things, digital and social media. In particular, these bigdata systems consist of data extraction, preprocessing, integration, analysis, andvisualization mechanism. The data encountered from the sources are redundant,incomplete and conflict. Moreover, in real time applications, it is a tedious processfor the interpretation of all the data from different sources. In this paper, the gath-ered data are preprocessed to handle the issues such as redundant, incomplete andconflict. For that, it is proposed to have a generalized dimensionality reductiontechnique called Shrinkage Linear Discriminate Analysis (SLDA). As a result,the Shrinkage Linear Discriminate Analysis (LDA) will improve the performanceof the classifier with generalization. Even though, dimensionality reduction sys-tems improve the performance of the classifier, the irrelevant features getdegraded by the performance of the system further. Hence, the relevant and themost important features are selected using Pearson correlation-based feature selec-tion technique which selects the subset of correlated features for improving theperformance of the classification system. The selected features are classified usingthe proposed Quadratic-Gaussian Discriminant Analysis (QGDA) classifier. Theproposed evolution techniques are tested with the localization and the cover datasets from machine learning University of California Irvine (UCI) repository. Inaddition to that, the proposed techniques on datasets are evaluated with the eva-luation metrics and compared to the other similar methods which prove the effi-ciency of the proposed classification system. It has achieved better performance.The acquired accuracy is over 91% for all the experiment on these datasets. Basedon the results evaluated in terms of training percentage and mapper, it is meaning-ful to conclude that the proposed method could be used for big data classification.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Intelligent Automation &amp; Soft Computing: An International Journal

  • ISSN

    1079-8587

  • e-ISSN

    2326-005X

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    1803-1818

  • Kód UT WoS článku

    000809701500005

  • EID výsledku v databázi Scopus

    2-s2.0-85131252313