A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019460" target="_blank" >RIV/62690094:18470/22:50019460 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-022-14225-7" target="_blank" >https://www.nature.com/articles/s41598-022-14225-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-14225-7" target="_blank" >10.1038/s41598-022-14225-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
Popis výsledku v původním jazyce
In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.
Název v anglickém jazyce
A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
Popis výsledku anglicky
In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
"Article number: 9924"
Kód UT WoS článku
000909508300001
EID výsledku v databázi Scopus
2-s2.0-85132291232