Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019633" target="_blank" >RIV/62690094:18470/22:50019633 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.riverpublishers.com/index.php/JWE/article/view/12913" target="_blank" >https://journals.riverpublishers.com/index.php/JWE/article/view/12913</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13052/jwe1540-9589.21414" target="_blank" >10.13052/jwe1540-9589.21414</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks

  • Popis výsledku v původním jazyce

    In the area where privacy is of greater concern, federated learning,a distributed machine learning strategy for preserving privacy,is widely employed in several privacy concern applications. In the meantime, neural architectures became familiar with deep learning approaches for automatic tuning of the architecture of deep neural networks (DNN). While searching with neural architecture and federated learning has experienced several challenges, optimized neural architecture research in federated learning is extensively on demand. DNN faces numerous issues while training such user privacy and ensuring the integrity of the aggregated results obtained from a server. To provide solutions for the above-mentioned issues, enormous federated learning techniques worked towards preserving privacy and were applied in different situations. Still, it is an open challenge that enables users to verify if the cloud server functions appropriately while ensuring users&apos; privacy while training. Federated Learning Method is a new way to improve the accuracy and precision, since the previous approach failed to opt the solutions. Here, Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL)is proposed to ensure the confidentiality of users&apos; local gradients while performing federated learning. The parameters such as classification accuracy, running time, Communication overhead, Computation overhead, and transaction speed are considered. The values obtained for these parameters are compared against three standard methods, namely Biparing Method (BM) Homomorphic Cryptosystem (HC), and Multiple Authorities with Attribute-Based Signature scheme (MA-ABS)against proposed Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL). As a result, the proposed ECC-BFL achieved 95% of classification accuracy, 65 sec of running time, 76% of communication overhead, 63% of computation overhead, and 92% of transaction speed.

  • Název v anglickém jazyce

    Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks

  • Popis výsledku anglicky

    In the area where privacy is of greater concern, federated learning,a distributed machine learning strategy for preserving privacy,is widely employed in several privacy concern applications. In the meantime, neural architectures became familiar with deep learning approaches for automatic tuning of the architecture of deep neural networks (DNN). While searching with neural architecture and federated learning has experienced several challenges, optimized neural architecture research in federated learning is extensively on demand. DNN faces numerous issues while training such user privacy and ensuring the integrity of the aggregated results obtained from a server. To provide solutions for the above-mentioned issues, enormous federated learning techniques worked towards preserving privacy and were applied in different situations. Still, it is an open challenge that enables users to verify if the cloud server functions appropriately while ensuring users&apos; privacy while training. Federated Learning Method is a new way to improve the accuracy and precision, since the previous approach failed to opt the solutions. Here, Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL)is proposed to ensure the confidentiality of users&apos; local gradients while performing federated learning. The parameters such as classification accuracy, running time, Communication overhead, Computation overhead, and transaction speed are considered. The values obtained for these parameters are compared against three standard methods, namely Biparing Method (BM) Homomorphic Cryptosystem (HC), and Multiple Authorities with Attribute-Based Signature scheme (MA-ABS)against proposed Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL). As a result, the proposed ECC-BFL achieved 95% of classification accuracy, 65 sec of running time, 76% of communication overhead, 63% of computation overhead, and 92% of transaction speed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF WEB ENGINEERING

  • ISSN

    1540-9589

  • e-ISSN

    1544-5976

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DK - Dánské království

  • Počet stran výsledku

    24

  • Strana od-do

    1323-1346

  • Kód UT WoS článku

    000783753900015

  • EID výsledku v databázi Scopus

    2-s2.0-85131047329