Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020392" target="_blank" >RIV/62690094:18470/23:50020392 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/CMES/online/detail/19111" target="_blank" >https://www.techscience.com/CMES/online/detail/19111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmes.2023.028314" target="_blank" >10.32604/cmes.2023.028314</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems
Popis výsledku v původním jazyce
This paper introduces a new metaheuristic algorithm called Migration Algorithm (MA), which is helpful in solving optimization problems. The fundamental inspiration of MA is the process of human migration, which aims to improve job, educational, economic, and living conditions, and so on. The mathematical modeling of the proposed MA is presented in two phases to empower the proposed approach in exploration and exploitation during the search process. In the exploration phase, the algorithm population is updated based on the simulation of choosing the migration destination among the available options. In the exploitation phase, the algorithm population is updated based on the efforts of individuals in the migration destination to adapt to the new environment and improve their conditions. MA's performance is evaluated on fifty-two standard benchmark functions consisting of unimodal and multimodal types and the CEC 2017 test suite. In addition, MA's results are compared with the performance of twelve well-known metaheuristic algorithms. The optimization results show the proposed MA approach's high ability to balance exploration and exploitation to achieve suitable solutions for optimization problems. The analysis and comparison of the simulation results show that MA has provided superior performance against competitor algorithms in most benchmark functions. Also, the implementation of MA on four engineering design problems indicates the effective capability of the proposed approach in handling optimization tasks in real-world applications.
Název v anglickém jazyce
Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems
Popis výsledku anglicky
This paper introduces a new metaheuristic algorithm called Migration Algorithm (MA), which is helpful in solving optimization problems. The fundamental inspiration of MA is the process of human migration, which aims to improve job, educational, economic, and living conditions, and so on. The mathematical modeling of the proposed MA is presented in two phases to empower the proposed approach in exploration and exploitation during the search process. In the exploration phase, the algorithm population is updated based on the simulation of choosing the migration destination among the available options. In the exploitation phase, the algorithm population is updated based on the efforts of individuals in the migration destination to adapt to the new environment and improve their conditions. MA's performance is evaluated on fifty-two standard benchmark functions consisting of unimodal and multimodal types and the CEC 2017 test suite. In addition, MA's results are compared with the performance of twelve well-known metaheuristic algorithms. The optimization results show the proposed MA approach's high ability to balance exploration and exploitation to achieve suitable solutions for optimization problems. The analysis and comparison of the simulation results show that MA has provided superior performance against competitor algorithms in most benchmark functions. Also, the implementation of MA on four engineering design problems indicates the effective capability of the proposed approach in handling optimization tasks in real-world applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Modeling in Engineering & Sciences
ISSN
1526-1492
e-ISSN
1526-1506
Svazek periodika
137
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
1695-1730
Kód UT WoS článku
000962854800001
EID výsledku v databázi Scopus
2-s2.0-85165172667