Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020392" target="_blank" >RIV/62690094:18470/23:50020392 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/CMES/online/detail/19111" target="_blank" >https://www.techscience.com/CMES/online/detail/19111</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/cmes.2023.028314" target="_blank" >10.32604/cmes.2023.028314</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems

  • Popis výsledku v původním jazyce

    This paper introduces a new metaheuristic algorithm called Migration Algorithm (MA), which is helpful in solving optimization problems. The fundamental inspiration of MA is the process of human migration, which aims to improve job, educational, economic, and living conditions, and so on. The mathematical modeling of the proposed MA is presented in two phases to empower the proposed approach in exploration and exploitation during the search process. In the exploration phase, the algorithm population is updated based on the simulation of choosing the migration destination among the available options. In the exploitation phase, the algorithm population is updated based on the efforts of individuals in the migration destination to adapt to the new environment and improve their conditions. MA&apos;s performance is evaluated on fifty-two standard benchmark functions consisting of unimodal and multimodal types and the CEC 2017 test suite. In addition, MA&apos;s results are compared with the performance of twelve well-known metaheuristic algorithms. The optimization results show the proposed MA approach&apos;s high ability to balance exploration and exploitation to achieve suitable solutions for optimization problems. The analysis and comparison of the simulation results show that MA has provided superior performance against competitor algorithms in most benchmark functions. Also, the implementation of MA on four engineering design problems indicates the effective capability of the proposed approach in handling optimization tasks in real-world applications.

  • Název v anglickém jazyce

    Migration Algorithm: A New Human-Based Metaheuristic Approach for Solving Optimization Problems

  • Popis výsledku anglicky

    This paper introduces a new metaheuristic algorithm called Migration Algorithm (MA), which is helpful in solving optimization problems. The fundamental inspiration of MA is the process of human migration, which aims to improve job, educational, economic, and living conditions, and so on. The mathematical modeling of the proposed MA is presented in two phases to empower the proposed approach in exploration and exploitation during the search process. In the exploration phase, the algorithm population is updated based on the simulation of choosing the migration destination among the available options. In the exploitation phase, the algorithm population is updated based on the efforts of individuals in the migration destination to adapt to the new environment and improve their conditions. MA&apos;s performance is evaluated on fifty-two standard benchmark functions consisting of unimodal and multimodal types and the CEC 2017 test suite. In addition, MA&apos;s results are compared with the performance of twelve well-known metaheuristic algorithms. The optimization results show the proposed MA approach&apos;s high ability to balance exploration and exploitation to achieve suitable solutions for optimization problems. The analysis and comparison of the simulation results show that MA has provided superior performance against competitor algorithms in most benchmark functions. Also, the implementation of MA on four engineering design problems indicates the effective capability of the proposed approach in handling optimization tasks in real-world applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Modeling in Engineering &amp; Sciences

  • ISSN

    1526-1492

  • e-ISSN

    1526-1506

  • Svazek periodika

    137

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    36

  • Strana od-do

    1695-1730

  • Kód UT WoS článku

    000962854800001

  • EID výsledku v databázi Scopus

    2-s2.0-85165172667