Decomposable (5,6)-solutions in eleven-dimensional supergravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020639" target="_blank" >RIV/62690094:18470/23:50020639 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/jmp/article-abstract/64/6/062301/2895253/Decomposable-5-6-solutions-in-eleven-dimensional?redirectedFrom=fulltext" target="_blank" >https://pubs.aip.org/aip/jmp/article-abstract/64/6/062301/2895253/Decomposable-5-6-solutions-in-eleven-dimensional?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0142572" target="_blank" >10.1063/5.0142572</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposable (5,6)-solutions in eleven-dimensional supergravity
Popis výsledku v původním jazyce
We present decomposable (5, 6)-solutions (M) over tilde (1,4) xM(6) in eleven-dimensional supergravity by solving the bosonic supergravity equations for a variety of non-trivial flux forms. Many of the bosonic backgrounds presented here are induced by various types of null flux forms on products of certain totally Ricci-isotropic Lorentzian Walker manifolds and Ricci-flat Riemannian manifolds. These constructions provide an analogy of the work performed by Chrysikos and Galaev [Classical Quantum Gravity 37, 125004 (2020)], who made similar computations for decomposable (6, 5)-solutions. We also present bosonic backgrounds that are products of Lorentzian Einstein manifolds with a negative Einstein constant (in the "mostly plus" convention) and Riemannian Kahler-Einstein manifolds with a positive Einstein constant. This conclusion generalizes a result of Pope and van Nieuwenhuizen [Commun. Math. Phys. 122, 281-292 (1989)] concerning the appearance of six-dimensional Kahler-Einstein manifolds in eleven-dimensional supergravity. In this setting, we construct infinitely many non-symmetric decomposable (5, 6)-supergravity backgrounds by using the infinitely many Lorentzian Einstein-Sasakian structures with a negative Einstein constant on the 5-sphere, known from the work of Boyer et al. [Commun. Math. Phys. 262, 177-208 (2006)].
Název v anglickém jazyce
Decomposable (5,6)-solutions in eleven-dimensional supergravity
Popis výsledku anglicky
We present decomposable (5, 6)-solutions (M) over tilde (1,4) xM(6) in eleven-dimensional supergravity by solving the bosonic supergravity equations for a variety of non-trivial flux forms. Many of the bosonic backgrounds presented here are induced by various types of null flux forms on products of certain totally Ricci-isotropic Lorentzian Walker manifolds and Ricci-flat Riemannian manifolds. These constructions provide an analogy of the work performed by Chrysikos and Galaev [Classical Quantum Gravity 37, 125004 (2020)], who made similar computations for decomposable (6, 5)-solutions. We also present bosonic backgrounds that are products of Lorentzian Einstein manifolds with a negative Einstein constant (in the "mostly plus" convention) and Riemannian Kahler-Einstein manifolds with a positive Einstein constant. This conclusion generalizes a result of Pope and van Nieuwenhuizen [Commun. Math. Phys. 122, 281-292 (1989)] concerning the appearance of six-dimensional Kahler-Einstein manifolds in eleven-dimensional supergravity. In this setting, we construct infinitely many non-symmetric decomposable (5, 6)-supergravity backgrounds by using the infinitely many Lorentzian Einstein-Sasakian structures with a negative Einstein constant on the 5-sphere, known from the work of Boyer et al. [Commun. Math. Phys. 262, 177-208 (2006)].
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14466Y" target="_blank" >GJ19-14466Y: Speciální metriky v supergravitaci a nové G-struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of mathematical physics
ISSN
0022-2488
e-ISSN
1089-7658
Svazek periodika
64
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
"Article Number: 062301"
Kód UT WoS článku
001004432400001
EID výsledku v databázi Scopus
2-s2.0-85161826475