Decomposable (4,7) solutions in eleven-dimensional supergravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015541" target="_blank" >RIV/62690094:18470/19:50015541 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6382/ab0615/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6382/ab0615/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/ab0615" target="_blank" >10.1088/1361-6382/ab0615</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposable (4,7) solutions in eleven-dimensional supergravity
Popis výsledku v původním jazyce
We describe a class of decomposable eleven-dimensional supergravity backgrounds (M-10,M-1 = (M) over tilde (3,1) x M-7, gM = (g) over tilde + g) which arc products of a four-dimensional Lorentzian manifold and a seven-dimensional Riemannian manifold, endowed with a flux form given in terms of the volume form on (M) over tilde (3,1) and a closed 4-form F-4 on M-7. We show that the Maxwell equation for such a flux form can be read in terms of the co-closed 3-form phi = *F-7(4). Moreover, the supergravity equation reduces to the condition that ((M) over tilde (3,1),(g) over tilde) is an Einstein manifold with negative Einstein constant and (M-7,g,F) is a Riemannian manifold which satisfies the Einstein equation with a stress-energy tensor associated to the 3-form phi. Whenever this 3-form is generic, we show that the Maxwell equation induces a weak G2-structure on M-7 and obtain decomposable supergravity backgrounds given by the product of a weak G(2) -manifold (M-7,phi,g) with a Lorentzian Einstein manifold ((M) over tilde (3,1),(g) over tilde). We also construct examples of compact homogeneous Riemannian 7-manifolds endowed with non-generic invariant 3-forms which satisfy the Maxwell equation, but the construction of decomposable homogeneous supergravity backgrounds of this type remains an open problem.
Název v anglickém jazyce
Decomposable (4,7) solutions in eleven-dimensional supergravity
Popis výsledku anglicky
We describe a class of decomposable eleven-dimensional supergravity backgrounds (M-10,M-1 = (M) over tilde (3,1) x M-7, gM = (g) over tilde + g) which arc products of a four-dimensional Lorentzian manifold and a seven-dimensional Riemannian manifold, endowed with a flux form given in terms of the volume form on (M) over tilde (3,1) and a closed 4-form F-4 on M-7. We show that the Maxwell equation for such a flux form can be read in terms of the co-closed 3-form phi = *F-7(4). Moreover, the supergravity equation reduces to the condition that ((M) over tilde (3,1),(g) over tilde) is an Einstein manifold with negative Einstein constant and (M-7,g,F) is a Riemannian manifold which satisfies the Einstein equation with a stress-energy tensor associated to the 3-form phi. Whenever this 3-form is generic, we show that the Maxwell equation induces a weak G2-structure on M-7 and obtain decomposable supergravity backgrounds given by the product of a weak G(2) -manifold (M-7,phi,g) with a Lorentzian Einstein manifold ((M) over tilde (3,1),(g) over tilde). We also construct examples of compact homogeneous Riemannian 7-manifolds endowed with non-generic invariant 3-forms which satisfy the Maxwell equation, but the construction of decomposable homogeneous supergravity backgrounds of this type remains an open problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and quantum gravity
ISSN
0264-9381
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000460058600002
EID výsledku v databázi Scopus
2-s2.0-85064089104