CR-twistor spaces over manifolds with G2 - and Spin(7)-structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00572817" target="_blank" >RIV/67985840:_____/23:00572817 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10231-023-01307-0" target="_blank" >https://doi.org/10.1007/s10231-023-01307-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-023-01307-0" target="_blank" >10.1007/s10231-023-01307-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CR-twistor spaces over manifolds with G2 - and Spin(7)-structures
Popis výsledku v původním jazyce
In 1984 LeBrun constructed a CR-twistor space over an arbitrary conformal Riemannian 3-manifold and proved that the CR-structure is formally integrable. This twistor construction has been generalized by Rossi in 1985 for m-dimensional Riemannian manifolds endowed with a (m- 1) -fold vector cross product (VCP). In 2011 Verbitsky generalized LeBrun’s construction of twistor-spaces to 7-manifolds endowed with a G 2-structure. In this paper we unify and generalize LeBrun’s, Rossi’s and Verbitsky’s construction of a CR-twistor space to the case where a Riemannian manifold (M, g) has a VCP structure. We show that the formal integrability of the CR-structure is expressed in terms of a torsion tensor on the twistor space, which is a Grassmannian bundle over (M, g). If the VCP structure on (M, g) is generated by a G 2- or Spin (7) -structure, then the vertical component of the torsion tensor vanishes if and only if (M, g) has constant curvature, and the horizontal component vanishes if and only if (M, g) is a torsion-free G 2 or Spin (7) -manifold. Finally we discuss some open problems.
Název v anglickém jazyce
CR-twistor spaces over manifolds with G2 - and Spin(7)-structures
Popis výsledku anglicky
In 1984 LeBrun constructed a CR-twistor space over an arbitrary conformal Riemannian 3-manifold and proved that the CR-structure is formally integrable. This twistor construction has been generalized by Rossi in 1985 for m-dimensional Riemannian manifolds endowed with a (m- 1) -fold vector cross product (VCP). In 2011 Verbitsky generalized LeBrun’s construction of twistor-spaces to 7-manifolds endowed with a G 2-structure. In this paper we unify and generalize LeBrun’s, Rossi’s and Verbitsky’s construction of a CR-twistor space to the case where a Riemannian manifold (M, g) has a VCP structure. We show that the formal integrability of the CR-structure is expressed in terms of a torsion tensor on the twistor space, which is a Grassmannian bundle over (M, g). If the VCP structure on (M, g) is generated by a G 2- or Spin (7) -structure, then the vertical component of the torsion tensor vanishes if and only if (M, g) has constant curvature, and the horizontal component vanishes if and only if (M, g) is a torsion-free G 2 or Spin (7) -manifold. Finally we discuss some open problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Svazek periodika
202
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
1931-1953
Kód UT WoS článku
000934589900001
EID výsledku v databázi Scopus
2-s2.0-85147737670