Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Invariant Connections with Skew-Torsion and del-Einstein Manifolds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00094244" target="_blank" >RIV/00216224:14310/16:00094244 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Invariant Connections with Skew-Torsion and del-Einstein Manifolds

  • Popis výsledku v původním jazyce

    For a compact connected Lie group G we study the class of bi-invariant affine connections whose geodesics through e is an element of G are the 1-parameter subgroups. We show that the bi-invariant affine connections which induce derivations on the corresponding Lie algebra g coincide with the bi-invariant metric connections. Next we describe the geometry of a naturally reductive space (M = G/K, g) endowed with a family of G-invariant connections del(alpha) whose torsion is a multiple of the torsion of the canonical connection del(c). For the spheres S-6 and S-7 we prove that the space of G(2) (respectively, Spin(7))-invariant affine or metric connections consists of the family del(alpha). Then we examine the "constancy" of the induced Ricci tensor Ric(alpha) and prove that any compact isotropy irreducible standard homogeneous Riemannian manifold, which is not a symmetric space of Type I, is a del(alpha)-Einstein manifold for any alpha is an element of R.

  • Název v anglickém jazyce

    Invariant Connections with Skew-Torsion and del-Einstein Manifolds

  • Popis výsledku anglicky

    For a compact connected Lie group G we study the class of bi-invariant affine connections whose geodesics through e is an element of G are the 1-parameter subgroups. We show that the bi-invariant affine connections which induce derivations on the corresponding Lie algebra g coincide with the bi-invariant metric connections. Next we describe the geometry of a naturally reductive space (M = G/K, g) endowed with a family of G-invariant connections del(alpha) whose torsion is a multiple of the torsion of the canonical connection del(c). For the spheres S-6 and S-7 we prove that the space of G(2) (respectively, Spin(7))-invariant affine or metric connections consists of the family del(alpha). Then we examine the "constancy" of the induced Ricci tensor Ric(alpha) and prove that any compact isotropy irreducible standard homogeneous Riemannian manifold, which is not a symmetric space of Type I, is a del(alpha)-Einstein manifold for any alpha is an element of R.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GP14-24642P" target="_blank" >GP14-24642P: Diracovy operátory s torzí a speciální geometrické struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Lie Theory

  • ISSN

    0949-5932

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    38

  • Strana od-do

    11-48

  • Kód UT WoS článku

    000377235700002

  • EID výsledku v databázi Scopus