Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gaussian bare-bones Levy circulatory system-based optimization for power flow in the presence of renewable units

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020896" target="_blank" >RIV/62690094:18470/23:50020896 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S221509862300229X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221509862300229X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jestch.2023.101551" target="_blank" >10.1016/j.jestch.2023.101551</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gaussian bare-bones Levy circulatory system-based optimization for power flow in the presence of renewable units

  • Popis výsledku v původním jazyce

    The Optimal Power Flow (OPF) is a vital issue in electrical networks to ensure the economical and safe operation to transfer electrical energy that is very complex, non-linear, and limited. In the electrical networks with Renewable Energy Sources (RES), the OPF problem is a much more complex and constrained optimization problem because incorporating the intermittent nature of RESs, including Wind Turbine (WT) and Photovoltaic (PV), which have been used in this article, and OPF is often used to optimize various problems. In this research, an effort has been made to modify and improve the performance of a new algorithm named Circulatory System-Based Optimization (CSBO) to a more powerful algorithm for complex OPF problems, and the result of this research was to present a more effective and powerful algorithm named Gaussian Bare-bones Levy CSBO (GBLCSBO). CSBO mimics the mating behavior of the circulatory system in the body. The IEEE 30-bus and 118-bus test networks are adopted to validate the capability of the suggested approach in minimizing four objectives, which include the total generation cost, voltage deviation, power loss, and pollution emission. Finally, to know the performance and strength of GBLCSBO for solving various OPF problems, several new powerful algorithms include Seagull Optimization Algorithm (SOA), Teaching-Learning-Based Optimization (TLBO), Gray Wolf Optimizer (GWO), Multi-Verse Optimizer (MVO) have been used to compare with GBLCSBO. Also, the CEC 2017 test functions were used to measure the performance of GBLCSBO in a broader range of optimization problems. The optimization results in both topics of OPF problems and various test functions compared with various algorithms showed that GBLCSBO is both strong and robust and has a suitable and comparative performance in a wide range of different optimization problems such as OPF. According to the obtained results, the GBLCSBO demonstrates high potential in solving OPF problems.

  • Název v anglickém jazyce

    Gaussian bare-bones Levy circulatory system-based optimization for power flow in the presence of renewable units

  • Popis výsledku anglicky

    The Optimal Power Flow (OPF) is a vital issue in electrical networks to ensure the economical and safe operation to transfer electrical energy that is very complex, non-linear, and limited. In the electrical networks with Renewable Energy Sources (RES), the OPF problem is a much more complex and constrained optimization problem because incorporating the intermittent nature of RESs, including Wind Turbine (WT) and Photovoltaic (PV), which have been used in this article, and OPF is often used to optimize various problems. In this research, an effort has been made to modify and improve the performance of a new algorithm named Circulatory System-Based Optimization (CSBO) to a more powerful algorithm for complex OPF problems, and the result of this research was to present a more effective and powerful algorithm named Gaussian Bare-bones Levy CSBO (GBLCSBO). CSBO mimics the mating behavior of the circulatory system in the body. The IEEE 30-bus and 118-bus test networks are adopted to validate the capability of the suggested approach in minimizing four objectives, which include the total generation cost, voltage deviation, power loss, and pollution emission. Finally, to know the performance and strength of GBLCSBO for solving various OPF problems, several new powerful algorithms include Seagull Optimization Algorithm (SOA), Teaching-Learning-Based Optimization (TLBO), Gray Wolf Optimizer (GWO), Multi-Verse Optimizer (MVO) have been used to compare with GBLCSBO. Also, the CEC 2017 test functions were used to measure the performance of GBLCSBO in a broader range of optimization problems. The optimization results in both topics of OPF problems and various test functions compared with various algorithms showed that GBLCSBO is both strong and robust and has a suitable and comparative performance in a wide range of different optimization problems such as OPF. According to the obtained results, the GBLCSBO demonstrates high potential in solving OPF problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Science and Technology, an International Journal

  • ISSN

    2215-0986

  • e-ISSN

    2215-0986

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    IN - Indická republika

  • Počet stran výsledku

    21

  • Strana od-do

    "Article number: 101551"

  • Kód UT WoS článku

    001108823000001

  • EID výsledku v databázi Scopus

    2-s2.0-85174741276