Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250917" target="_blank" >RIV/61989100:27230/22:10250917 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mdpi-res.com/d_attachment/electronics/electronics-11-03825/article_deploy/electronics-11-03825.pdf?version=1669022174" target="_blank" >https://mdpi-res.com/d_attachment/electronics/electronics-11-03825/article_deploy/electronics-11-03825.pdf?version=1669022174</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/electronics11223825" target="_blank" >10.3390/electronics11223825</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems

  • Popis výsledku v původním jazyce

    The current research investigates a new and unique Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) algorithm for solving large-scale Optimal Power Flow (OPF) problems of complex power systems, including renewable energy sources and Flexible AC Transmission Systems (FACTS). A recently reported single-objective generalized normal distribution optimization algorithm is transformed into the MOGNDO algorithm using the nondominated sorting and crowding distancing mechanisms. The OPF problem gets even more challenging when sources of renewable energy are integrated into the grid system, which are unreliable and fluctuating. FACTS devices are also being used more frequently in contemporary power networks to assist in reducing network demand and congestion. In this study, a stochastic wind power source was used with different FACTS devices, including a static VAR compensator, a thyristor- driven series compensator, and a thyristor-driven phase shifter, together with an IEEE-30 bus system. Positions and ratings of the FACTS devices can be intended to reduce the system&apos;s overall fuel cost. Weibull probability density curves were used to highlight the stochastic character of the wind energy source. The best compromise solutions were obtained using a fuzzy decision-making approach. The results obtained on a modified IEEE-30 bus system were compared with other well-known optimization algorithms, and the obtained results proved that MOGNDO has improved convergence, diversity, and spread behavior across PFs. (C) 2022 by the authors.

  • Název v anglickém jazyce

    A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems

  • Popis výsledku anglicky

    The current research investigates a new and unique Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) algorithm for solving large-scale Optimal Power Flow (OPF) problems of complex power systems, including renewable energy sources and Flexible AC Transmission Systems (FACTS). A recently reported single-objective generalized normal distribution optimization algorithm is transformed into the MOGNDO algorithm using the nondominated sorting and crowding distancing mechanisms. The OPF problem gets even more challenging when sources of renewable energy are integrated into the grid system, which are unreliable and fluctuating. FACTS devices are also being used more frequently in contemporary power networks to assist in reducing network demand and congestion. In this study, a stochastic wind power source was used with different FACTS devices, including a static VAR compensator, a thyristor- driven series compensator, and a thyristor-driven phase shifter, together with an IEEE-30 bus system. Positions and ratings of the FACTS devices can be intended to reduce the system&apos;s overall fuel cost. Weibull probability density curves were used to highlight the stochastic character of the wind energy source. The best compromise solutions were obtained using a fuzzy decision-making approach. The results obtained on a modified IEEE-30 bus system were compared with other well-known optimization algorithms, and the obtained results proved that MOGNDO has improved convergence, diversity, and spread behavior across PFs. (C) 2022 by the authors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronics

  • ISSN

    2079-9292

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    34

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000887102300001

  • EID výsledku v databázi Scopus

    2-s2.0-85142418821