A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250917" target="_blank" >RIV/61989100:27230/22:10250917 - isvavai.cz</a>
Výsledek na webu
<a href="https://mdpi-res.com/d_attachment/electronics/electronics-11-03825/article_deploy/electronics-11-03825.pdf?version=1669022174" target="_blank" >https://mdpi-res.com/d_attachment/electronics/electronics-11-03825/article_deploy/electronics-11-03825.pdf?version=1669022174</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics11223825" target="_blank" >10.3390/electronics11223825</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems
Popis výsledku v původním jazyce
The current research investigates a new and unique Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) algorithm for solving large-scale Optimal Power Flow (OPF) problems of complex power systems, including renewable energy sources and Flexible AC Transmission Systems (FACTS). A recently reported single-objective generalized normal distribution optimization algorithm is transformed into the MOGNDO algorithm using the nondominated sorting and crowding distancing mechanisms. The OPF problem gets even more challenging when sources of renewable energy are integrated into the grid system, which are unreliable and fluctuating. FACTS devices are also being used more frequently in contemporary power networks to assist in reducing network demand and congestion. In this study, a stochastic wind power source was used with different FACTS devices, including a static VAR compensator, a thyristor- driven series compensator, and a thyristor-driven phase shifter, together with an IEEE-30 bus system. Positions and ratings of the FACTS devices can be intended to reduce the system's overall fuel cost. Weibull probability density curves were used to highlight the stochastic character of the wind energy source. The best compromise solutions were obtained using a fuzzy decision-making approach. The results obtained on a modified IEEE-30 bus system were compared with other well-known optimization algorithms, and the obtained results proved that MOGNDO has improved convergence, diversity, and spread behavior across PFs. (C) 2022 by the authors.
Název v anglickém jazyce
A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems
Popis výsledku anglicky
The current research investigates a new and unique Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) algorithm for solving large-scale Optimal Power Flow (OPF) problems of complex power systems, including renewable energy sources and Flexible AC Transmission Systems (FACTS). A recently reported single-objective generalized normal distribution optimization algorithm is transformed into the MOGNDO algorithm using the nondominated sorting and crowding distancing mechanisms. The OPF problem gets even more challenging when sources of renewable energy are integrated into the grid system, which are unreliable and fluctuating. FACTS devices are also being used more frequently in contemporary power networks to assist in reducing network demand and congestion. In this study, a stochastic wind power source was used with different FACTS devices, including a static VAR compensator, a thyristor- driven series compensator, and a thyristor-driven phase shifter, together with an IEEE-30 bus system. Positions and ratings of the FACTS devices can be intended to reduce the system's overall fuel cost. Weibull probability density curves were used to highlight the stochastic character of the wind energy source. The best compromise solutions were obtained using a fuzzy decision-making approach. The results obtained on a modified IEEE-30 bus system were compared with other well-known optimization algorithms, and the obtained results proved that MOGNDO has improved convergence, diversity, and spread behavior across PFs. (C) 2022 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronics
ISSN
2079-9292
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
34
Strana od-do
nestrankovano
Kód UT WoS článku
000887102300001
EID výsledku v databázi Scopus
2-s2.0-85142418821