Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254335" target="_blank" >RIV/61989100:27230/24:10254335 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001162488400001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001162488400001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s44196-024-00415-w" target="_blank" >10.1007/s44196-024-00415-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices
Popis výsledku v původním jazyce
This study delves into the exploration of a novel Multi-objective Snow Ablation Optimizer (MOSAO) algorithm, tailored for addressing expansive Optimal Power Flow (OPF) challenges inherent in intricate power systems. These systems are often complemented with the integration of renewable energy modalities and the state-of-the-art Flexible AC Transmission Systems (FACTS). Building upon the foundational framework of a previously documented single-objective Snow Ablation Optimizer, we have evolved it into the MOSAO paradigm. This transformation is achieved by harnessing the potency of non-dominated sorting coupled with the crowding distance strategy. The task of OPF magnifies in complexity when integrating renewable energy resources due to their inherent unpredictability and intermittent nature. As the modern power landscape evolves, FACTS devices are witnessing an increasing deployment to mitigate network demand and alleviate congestion issues. Within the ambit of this research, we've incorporated a stochastic wind energy source, working synergistically with an array of FACTS instruments. These encompass the static VAR compensator, thyristor-controlled series compensator and thyristor-driven phase shifter, all operating within the confines of an IEEE-30 bus framework. Strategic placement and calibration of these FACTS devices aim to optimize the system by minimizing the cumulative fuel expenditure. The capricious essence of wind as an energy source is elegantly depicted through the lens of Weibull probability density graphs. To distil the optimal middle-ground solutions, we've employed a fuzzy decision-making matrix. When benchmarking our findings against those derived from other esteemed optimization algorithms, we observe a notable distinction. The results from the modified IEEE-30 bus system accentuate the superior convergence, diversity and distribution attributes of MOSAO, especially when scrutinizing power flows. The MOSAO source code is available at: https://github.com/kanak02/MOSAO.
Název v anglickém jazyce
Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices
Popis výsledku anglicky
This study delves into the exploration of a novel Multi-objective Snow Ablation Optimizer (MOSAO) algorithm, tailored for addressing expansive Optimal Power Flow (OPF) challenges inherent in intricate power systems. These systems are often complemented with the integration of renewable energy modalities and the state-of-the-art Flexible AC Transmission Systems (FACTS). Building upon the foundational framework of a previously documented single-objective Snow Ablation Optimizer, we have evolved it into the MOSAO paradigm. This transformation is achieved by harnessing the potency of non-dominated sorting coupled with the crowding distance strategy. The task of OPF magnifies in complexity when integrating renewable energy resources due to their inherent unpredictability and intermittent nature. As the modern power landscape evolves, FACTS devices are witnessing an increasing deployment to mitigate network demand and alleviate congestion issues. Within the ambit of this research, we've incorporated a stochastic wind energy source, working synergistically with an array of FACTS instruments. These encompass the static VAR compensator, thyristor-controlled series compensator and thyristor-driven phase shifter, all operating within the confines of an IEEE-30 bus framework. Strategic placement and calibration of these FACTS devices aim to optimize the system by minimizing the cumulative fuel expenditure. The capricious essence of wind as an energy source is elegantly depicted through the lens of Weibull probability density graphs. To distil the optimal middle-ground solutions, we've employed a fuzzy decision-making matrix. When benchmarking our findings against those derived from other esteemed optimization algorithms, we observe a notable distinction. The results from the modified IEEE-30 bus system accentuate the superior convergence, diversity and distribution attributes of MOSAO, especially when scrutinizing power flows. The MOSAO source code is available at: https://github.com/kanak02/MOSAO.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computational Intelligence Systems
ISSN
1875-6891
e-ISSN
1875-6883
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
30
Strana od-do
—
Kód UT WoS článku
001162488400001
EID výsledku v databázi Scopus
—