Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254335" target="_blank" >RIV/61989100:27230/24:10254335 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001162488400001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001162488400001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s44196-024-00415-w" target="_blank" >10.1007/s44196-024-00415-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices

  • Popis výsledku v původním jazyce

    This study delves into the exploration of a novel Multi-objective Snow Ablation Optimizer (MOSAO) algorithm, tailored for addressing expansive Optimal Power Flow (OPF) challenges inherent in intricate power systems. These systems are often complemented with the integration of renewable energy modalities and the state-of-the-art Flexible AC Transmission Systems (FACTS). Building upon the foundational framework of a previously documented single-objective Snow Ablation Optimizer, we have evolved it into the MOSAO paradigm. This transformation is achieved by harnessing the potency of non-dominated sorting coupled with the crowding distance strategy. The task of OPF magnifies in complexity when integrating renewable energy resources due to their inherent unpredictability and intermittent nature. As the modern power landscape evolves, FACTS devices are witnessing an increasing deployment to mitigate network demand and alleviate congestion issues. Within the ambit of this research, we&apos;ve incorporated a stochastic wind energy source, working synergistically with an array of FACTS instruments. These encompass the static VAR compensator, thyristor-controlled series compensator and thyristor-driven phase shifter, all operating within the confines of an IEEE-30 bus framework. Strategic placement and calibration of these FACTS devices aim to optimize the system by minimizing the cumulative fuel expenditure. The capricious essence of wind as an energy source is elegantly depicted through the lens of Weibull probability density graphs. To distil the optimal middle-ground solutions, we&apos;ve employed a fuzzy decision-making matrix. When benchmarking our findings against those derived from other esteemed optimization algorithms, we observe a notable distinction. The results from the modified IEEE-30 bus system accentuate the superior convergence, diversity and distribution attributes of MOSAO, especially when scrutinizing power flows. The MOSAO source code is available at: https://github.com/kanak02/MOSAO.

  • Název v anglickém jazyce

    Multi-objective Snow Ablation Optimization Algorithm: An Elementary Vision for Security-Constrained Optimal Power Flow Problem Incorporating Wind Energy Source with FACTS Devices

  • Popis výsledku anglicky

    This study delves into the exploration of a novel Multi-objective Snow Ablation Optimizer (MOSAO) algorithm, tailored for addressing expansive Optimal Power Flow (OPF) challenges inherent in intricate power systems. These systems are often complemented with the integration of renewable energy modalities and the state-of-the-art Flexible AC Transmission Systems (FACTS). Building upon the foundational framework of a previously documented single-objective Snow Ablation Optimizer, we have evolved it into the MOSAO paradigm. This transformation is achieved by harnessing the potency of non-dominated sorting coupled with the crowding distance strategy. The task of OPF magnifies in complexity when integrating renewable energy resources due to their inherent unpredictability and intermittent nature. As the modern power landscape evolves, FACTS devices are witnessing an increasing deployment to mitigate network demand and alleviate congestion issues. Within the ambit of this research, we&apos;ve incorporated a stochastic wind energy source, working synergistically with an array of FACTS instruments. These encompass the static VAR compensator, thyristor-controlled series compensator and thyristor-driven phase shifter, all operating within the confines of an IEEE-30 bus framework. Strategic placement and calibration of these FACTS devices aim to optimize the system by minimizing the cumulative fuel expenditure. The capricious essence of wind as an energy source is elegantly depicted through the lens of Weibull probability density graphs. To distil the optimal middle-ground solutions, we&apos;ve employed a fuzzy decision-making matrix. When benchmarking our findings against those derived from other esteemed optimization algorithms, we observe a notable distinction. The results from the modified IEEE-30 bus system accentuate the superior convergence, diversity and distribution attributes of MOSAO, especially when scrutinizing power flows. The MOSAO source code is available at: https://github.com/kanak02/MOSAO.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Computational Intelligence Systems

  • ISSN

    1875-6891

  • e-ISSN

    1875-6883

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    001162488400001

  • EID výsledku v databázi Scopus