A new human-based metaheuristic algorithm for solving optimization problems based on preschool education
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021144" target="_blank" >RIV/62690094:18470/23:50021144 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-023-48462-1" target="_blank" >https://www.nature.com/articles/s41598-023-48462-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-023-48462-1" target="_blank" >10.1038/s41598-023-48462-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new human-based metaheuristic algorithm for solving optimization problems based on preschool education
Popis výsledku v původním jazyce
In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration–exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.
Název v anglickém jazyce
A new human-based metaheuristic algorithm for solving optimization problems based on preschool education
Popis výsledku anglicky
In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration–exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50302 - Education, special (to gifted persons, those with learning disabilities)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
31
Strana od-do
"Article number: 21472"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85178850260