Interpretable synthetic signals for explainable one-class time-series classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021113" target="_blank" >RIV/62690094:18470/24:50021113 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197623019000" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197623019000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2023.107716" target="_blank" >10.1016/j.engappai.2023.107716</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpretable synthetic signals for explainable one-class time-series classification
Popis výsledku v původním jazyce
This research paper introduces an innovative approach for explainable one-class time-series classification (XOCTSC). The proposed method involves generating pseudounseen synthetic signals by altering the amplitude and cycle of the original signals. Subsequently, a classification process is performed to distinguish between the original and synthetic signals, and the resulting model is applied to testing data. Instances classified as synthetic classes are treated as unseen classes, and the dissimilarity with the training data can be elucidated through an explanation of the synthetic class creation process. This approach aims to enhance the interpretability of one-class time-series classification models by providing insights into the reasoning behind their decisions. The proposed method is demonstrated with a ballistocardiogram (BCG) signal for the breathing dataset and an electroencephalogram (EEG) signal for the epilepsy dataset. The proposed method recognizes BCG amplitude reduction during breath holding. Moreover, EEG cycle changes during epileptic seizures are observed across multiple channels. These observations align with actual epilepsy symptoms and breathing behaviors.
Název v anglickém jazyce
Interpretable synthetic signals for explainable one-class time-series classification
Popis výsledku anglicky
This research paper introduces an innovative approach for explainable one-class time-series classification (XOCTSC). The proposed method involves generating pseudounseen synthetic signals by altering the amplitude and cycle of the original signals. Subsequently, a classification process is performed to distinguish between the original and synthetic signals, and the resulting model is applied to testing data. Instances classified as synthetic classes are treated as unseen classes, and the dissimilarity with the training data can be elucidated through an explanation of the synthetic class creation process. This approach aims to enhance the interpretability of one-class time-series classification models by providing insights into the reasoning behind their decisions. The proposed method is demonstrated with a ballistocardiogram (BCG) signal for the breathing dataset and an electroencephalogram (EEG) signal for the epilepsy dataset. The proposed method recognizes BCG amplitude reduction during breath holding. Moreover, EEG cycle changes during epileptic seizures are observed across multiple channels. These observations align with actual epilepsy symptoms and breathing behaviors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering applications of artificial intelligence
ISSN
0952-1976
e-ISSN
1873-6769
Svazek periodika
131
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"Article number: 107716"
Kód UT WoS článku
001151379700001
EID výsledku v databázi Scopus
2-s2.0-85181951057