Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021491" target="_blank" >RIV/62690094:18470/24:50021491 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10586-023-04221-5" target="_blank" >https://link.springer.com/article/10.1007/s10586-023-04221-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10586-023-04221-5" target="_blank" >10.1007/s10586-023-04221-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning

  • Popis výsledku v původním jazyce

    Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm&apos;s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po.

  • Název v anglickém jazyce

    Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning

  • Popis výsledku anglicky

    Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm&apos;s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Cluster Computing

  • ISSN

    1386-7857

  • e-ISSN

    1573-7543

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    49

  • Strana od-do

    5235-5283

  • Kód UT WoS článku

    001145076400005

  • EID výsledku v databázi Scopus

    2-s2.0-85182682775