Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021724" target="_blank" >RIV/62690094:18470/24:50021724 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0263876224003496?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263876224003496?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cherd.2024.06.019" target="_blank" >10.1016/j.cherd.2024.06.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations
Popis výsledku v původním jazyce
Catalysis plays a critical role in the quest for sustainable automotive technology, particularly in reducing harmful emissions from vehicles. The catalysts are required to operate efficiently in dynamic and challenging environments. This study introduces innovative deNOx catalysts featuring nominal concentrations of Pd and Re nanoparticles doped on a NiMo support. The best-performing fabricated catalyst demonstrated impressive 95 % NOx conversion at 250 degrees C, significantly outperforming traditional systems and reducing ammonia slip. Integrating nickel as the support material was strategic choice to leverage novel induction heating-assisted catalytic system. This approach is particularly advantageous when starting cold engine, reducing harmful NOx emissions when the catalyst is not fully operational. Functional monolith model of car converter catalyst with similar composition was also developed. This research presents novel catalyst solution that achieves high deNOx efficiency while offering a cost-effective alternative to traditional methods. Induction heating enhances the catalyst's performance, particularly at lower temperatures, showcasing significant improvement over conventional thermal methods.
Název v anglickém jazyce
Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations
Popis výsledku anglicky
Catalysis plays a critical role in the quest for sustainable automotive technology, particularly in reducing harmful emissions from vehicles. The catalysts are required to operate efficiently in dynamic and challenging environments. This study introduces innovative deNOx catalysts featuring nominal concentrations of Pd and Re nanoparticles doped on a NiMo support. The best-performing fabricated catalyst demonstrated impressive 95 % NOx conversion at 250 degrees C, significantly outperforming traditional systems and reducing ammonia slip. Integrating nickel as the support material was strategic choice to leverage novel induction heating-assisted catalytic system. This approach is particularly advantageous when starting cold engine, reducing harmful NOx emissions when the catalyst is not fully operational. Functional monolith model of car converter catalyst with similar composition was also developed. This research presents novel catalyst solution that achieves high deNOx efficiency while offering a cost-effective alternative to traditional methods. Induction heating enhances the catalyst's performance, particularly at lower temperatures, showcasing significant improvement over conventional thermal methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Research and Design
ISSN
0263-8762
e-ISSN
1744-3563
Svazek periodika
207
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
404-419
Kód UT WoS článku
001292368100001
EID výsledku v databázi Scopus
2-s2.0-85196393376