NERD: Network Entity Reputation Database
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F19%3A10133165" target="_blank" >RIV/63839172:_____/19:10133165 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3339252.3340512" target="_blank" >https://dl.acm.org/doi/10.1145/3339252.3340512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3339252.3340512" target="_blank" >10.1145/3339252.3340512</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NERD: Network Entity Reputation Database
Popis výsledku v původním jazyce
We present an open database of known malicious entities on the internet called Network Entity Reputation Database. It gathers alerts from a large number of diverse security monitoring tools and other sources and keeps detailed information about all network entities (IP addresses, ASNs, domain names, etc.) which have been reported as malicious. It also adds other related data from a multitude of sources, like whois registries, blacklists or geolocation databases. Due to the large amount, diversity and volatility of such data, creation of such a database system is not trivial. In the paper we describe the data model, system architecture and technologies used, as well as some statistics from the pilot deployment of the system. We operate the database as a free service for the cyber security community to help with prevention, defense, investigation of incidents as well as research and believe it will become a valuable contribution to the family of existing open cyber threat intelligence platforms.
Název v anglickém jazyce
NERD: Network Entity Reputation Database
Popis výsledku anglicky
We present an open database of known malicious entities on the internet called Network Entity Reputation Database. It gathers alerts from a large number of diverse security monitoring tools and other sources and keeps detailed information about all network entities (IP addresses, ASNs, domain names, etc.) which have been reported as malicious. It also adds other related data from a multitude of sources, like whois registries, blacklists or geolocation databases. Due to the large amount, diversity and volatility of such data, creation of such a database system is not trivial. In the paper we describe the data model, system architecture and technologies used, as well as some statistics from the pilot deployment of the system. We operate the database as a free service for the cyber security community to help with prevention, defense, investigation of incidents as well as research and believe it will become a valuable contribution to the family of existing open cyber threat intelligence platforms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Availability, Reliability and Security
ISBN
978-1-4503-7164-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Canterbury, United Kingdom
Datum konání akce
26. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—