Network entity characterization and attack prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F19%3A10133136" target="_blank" >RIV/63839172:_____/19:10133136 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167739X18307799" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X18307799</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.future.2019.03.016" target="_blank" >10.1016/j.future.2019.03.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Network entity characterization and attack prediction
Popis výsledku v původním jazyce
The devastating effects of cyber-attacks, highlight the need for novel attack detection and prevention techniques. Over the last years, considerable work has been done in the areas of attack detection as well as in collaborative defense. However, an analysis of the state of the art suggests that many challenges exist in prioritizing alert data and in studying the relation between a recently discovered attack and the probability of it occurring again. In this article, we propose a system that is intended for characterizing network entities and the likelihood that they will behave maliciously in the future. Our system, namely Network Entity Reputation Database System (NERDS), takes into account all the available information regarding a network entity (e. g. IP address) to calculate the probability that it will act maliciously. The latter part is achieved via the utilization of machine learning. Our experimental results show that it is indeed possible to precisely estimate the probability of future attacks from each entity using information about its previous malicious behavior and other characteristics. Ranking the entities by this probability has practical applications in alert prioritization, assembly of highly effective blacklists of a limited length and other use cases.
Název v anglickém jazyce
Network entity characterization and attack prediction
Popis výsledku anglicky
The devastating effects of cyber-attacks, highlight the need for novel attack detection and prevention techniques. Over the last years, considerable work has been done in the areas of attack detection as well as in collaborative defense. However, an analysis of the state of the art suggests that many challenges exist in prioritizing alert data and in studying the relation between a recently discovered attack and the probability of it occurring again. In this article, we propose a system that is intended for characterizing network entities and the likelihood that they will behave maliciously in the future. Our system, namely Network Entity Reputation Database System (NERDS), takes into account all the available information regarding a network entity (e. g. IP address) to calculate the probability that it will act maliciously. The latter part is achieved via the utilization of machine learning. Our experimental results show that it is indeed possible to precisely estimate the probability of future attacks from each entity using information about its previous malicious behavior and other characteristics. Ranking the entities by this probability has practical applications in alert prioritization, assembly of highly effective blacklists of a limited length and other use cases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Generation Computer Systems
ISSN
0167-739X
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
97
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
674-686
Kód UT WoS článku
000469154500051
EID výsledku v databázi Scopus
2-s2.0-85063286903