Windower: Feature Extraction for Real-Time DDoS Detection Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133620" target="_blank" >RIV/63839172:_____/24:10133620 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10575699" target="_blank" >https://ieeexplore.ieee.org/document/10575699</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575699" target="_blank" >10.1109/NOMS59830.2024.10575699</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Windower: Feature Extraction for Real-Time DDoS Detection Using Machine Learning
Popis výsledku v původním jazyce
Distributed Denial of Service (DDoS) attacks are an ever-increasing type of security incident on modern computer networks. To tackle the issue, we propose Windower, a feature-extraction method for real-time network-based intrusion (particularly DDoS) detection. Our stream data mining module employs a sliding window principle to compute statistical information directly from network packets. Furthermore, we summarize several such windows and compute inter-window statistics to increase detection reliability. Summarized statistics are then fed into an ML-based attack discriminator. If an attack is recognized, we drop the consequent attacking source's traffic using simple ACL rules. The experimental results evaluated on several datasets indicate the ability to reliably detect an ongoing attack within the first six seconds of its start and mitigate 99 % of flood and 92 % of slow attacks while maintaining false positives below 1 %. In contrast to state-of-the-art, our approach provides greater flexibility by achieving high detection performance and low resources as flow-based systems while offering prompt attack detection known from packet-based solutions. Windower thus brings an appealing trade-off between attack detection performance, detection delay, and computing resources suitable for real-world deployments.
Název v anglickém jazyce
Windower: Feature Extraction for Real-Time DDoS Detection Using Machine Learning
Popis výsledku anglicky
Distributed Denial of Service (DDoS) attacks are an ever-increasing type of security incident on modern computer networks. To tackle the issue, we propose Windower, a feature-extraction method for real-time network-based intrusion (particularly DDoS) detection. Our stream data mining module employs a sliding window principle to compute statistical information directly from network packets. Furthermore, we summarize several such windows and compute inter-window statistics to increase detection reliability. Summarized statistics are then fed into an ML-based attack discriminator. If an attack is recognized, we drop the consequent attacking source's traffic using simple ACL rules. The experimental results evaluated on several datasets indicate the ability to reliably detect an ongoing attack within the first six seconds of its start and mitigate 99 % of flood and 92 % of slow attacks while maintaining false positives below 1 %. In contrast to state-of-the-art, our approach provides greater flexibility by achieving high detection performance and low resources as flow-based systems while offering prompt attack detection known from packet-based solutions. Windower thus brings an appealing trade-off between attack detection performance, detection delay, and computing resources suitable for real-world deployments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023054" target="_blank" >LM2023054: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024
ISBN
979-8-3503-2793-9
ISSN
1542-1201
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
IEEE
Místo vydání
Seoul, Republic of Korea
Místo konání akce
Seoul, South Korea
Datum konání akce
6. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001270140300170