Fusing Heterogeneous Data for Network Asset Classification - A Two-layer Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133657" target="_blank" >RIV/63839172:_____/24:10133657 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575154" target="_blank" >http://dx.doi.org/10.1109/NOMS59830.2024.10575154</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575154" target="_blank" >10.1109/NOMS59830.2024.10575154</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fusing Heterogeneous Data for Network Asset Classification - A Two-layer Approach
Popis výsledku v původním jazyce
An essential aspect of cybersecurity management is maintaining knowledge of the assets in the protected network. Automated asset discovery and classification can be done using various methods, differing in reliability and the provided type of information. Therefore, deploying multiple methods and combining their results is usually needed - but this is a nontrivial task. In this paper, we describe our case of how we got to the need for such a data fusion method, how we approached it, and we present our solution - a two-layer data fusion method that can effectively fuse multiple heterogeneous and unreliable sources of information about a network device to classify it. The method is based on a combination of expert-written conditions, machine learning from small amounts of data, and the Dempster-Shafer theory of evidence. We evaluate the method on the task of operating system recognition using data from real network traffic and several generated datasets simulating different conditions.
Název v anglickém jazyce
Fusing Heterogeneous Data for Network Asset Classification - A Two-layer Approach
Popis výsledku anglicky
An essential aspect of cybersecurity management is maintaining knowledge of the assets in the protected network. Automated asset discovery and classification can be done using various methods, differing in reliability and the provided type of information. Therefore, deploying multiple methods and combining their results is usually needed - but this is a nontrivial task. In this paper, we describe our case of how we got to the need for such a data fusion method, how we approached it, and we present our solution - a two-layer data fusion method that can effectively fuse multiple heterogeneous and unreliable sources of information about a network device to classify it. The method is based on a combination of expert-written conditions, machine learning from small amounts of data, and the Dempster-Shafer theory of evidence. We evaluate the method on the task of operating system recognition using data from real network traffic and several generated datasets simulating different conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023054" target="_blank" >LM2023054: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NOMS 2024-2024 IEEE Network Operations and Management Symposium
ISBN
979-8-3503-2793-9
ISSN
2374-9709
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Seoul, South Korea
Místo konání akce
Seoul, South Korea
Datum konání akce
6. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001270140300051