Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347067" target="_blank" >RIV/68407700:21230/21:00347067 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.robot.2020.103687" target="_blank" >https://doi.org/10.1016/j.robot.2020.103687</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.robot.2020.103687" target="_blank" >10.1016/j.robot.2020.103687</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog

  • Popis výsledku v původním jazyce

    We present an experimental investigation of a multi-sensor fusion-learning system for detecting pedestrians in foggy weather conditions. The method combines two pipelines for people detection running on two different sensors commonly found on moving vehicles: lidar and radar. The two pipelines are not only combined by sensor fusion, but information from one pipeline is used to train the other. We build upon our previous work, where we showed that a lidar pipeline can be used to train a Support Vector Machine (SVM)-based pipeline to interpret radar data, which is useful when conditions then become unfavourable to the original lidar pipeline. In this paper, we test the method on a wider range of conditions, such as from a moving vehicle, and with multiple people present. Additionally, we also compare how the traditional SVM performs interpreting the radar data versus a modern deep neural network on these experiments. Our experiments indicate that either of the approaches results in progressive improvement in the performance during normal operation. Further, our experiments indicate that in the event of the loss of information from a sensor, pedestrian detection and position estimation is still effective.

  • Název v anglickém jazyce

    Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog

  • Popis výsledku anglicky

    We present an experimental investigation of a multi-sensor fusion-learning system for detecting pedestrians in foggy weather conditions. The method combines two pipelines for people detection running on two different sensors commonly found on moving vehicles: lidar and radar. The two pipelines are not only combined by sensor fusion, but information from one pipeline is used to train the other. We build upon our previous work, where we showed that a lidar pipeline can be used to train a Support Vector Machine (SVM)-based pipeline to interpret radar data, which is useful when conditions then become unfavourable to the original lidar pipeline. In this paper, we test the method on a wider range of conditions, such as from a moving vehicle, and with multiple people present. Additionally, we also compare how the traditional SVM performs interpreting the radar data versus a modern deep neural network on these experiments. Our experiments indicate that either of the approaches results in progressive improvement in the performance during normal operation. Further, our experiments indicate that in the event of the loss of information from a sensor, pedestrian detection and position estimation is still effective.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Robotics and Autonomous Systems

  • ISSN

    0921-8890

  • e-ISSN

    1872-793X

  • Svazek periodika

    136

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000609453100002

  • EID výsledku v databázi Scopus

    2-s2.0-85096678939