Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347067" target="_blank" >RIV/68407700:21230/21:00347067 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.robot.2020.103687" target="_blank" >https://doi.org/10.1016/j.robot.2020.103687</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.robot.2020.103687" target="_blank" >10.1016/j.robot.2020.103687</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog
Popis výsledku v původním jazyce
We present an experimental investigation of a multi-sensor fusion-learning system for detecting pedestrians in foggy weather conditions. The method combines two pipelines for people detection running on two different sensors commonly found on moving vehicles: lidar and radar. The two pipelines are not only combined by sensor fusion, but information from one pipeline is used to train the other. We build upon our previous work, where we showed that a lidar pipeline can be used to train a Support Vector Machine (SVM)-based pipeline to interpret radar data, which is useful when conditions then become unfavourable to the original lidar pipeline. In this paper, we test the method on a wider range of conditions, such as from a moving vehicle, and with multiple people present. Additionally, we also compare how the traditional SVM performs interpreting the radar data versus a modern deep neural network on these experiments. Our experiments indicate that either of the approaches results in progressive improvement in the performance during normal operation. Further, our experiments indicate that in the event of the loss of information from a sensor, pedestrian detection and position estimation is still effective.
Název v anglickém jazyce
Learning to see through the haze: Multi-sensor learning-fusion System for Vulnerable Traffic Participant Detection in Fog
Popis výsledku anglicky
We present an experimental investigation of a multi-sensor fusion-learning system for detecting pedestrians in foggy weather conditions. The method combines two pipelines for people detection running on two different sensors commonly found on moving vehicles: lidar and radar. The two pipelines are not only combined by sensor fusion, but information from one pipeline is used to train the other. We build upon our previous work, where we showed that a lidar pipeline can be used to train a Support Vector Machine (SVM)-based pipeline to interpret radar data, which is useful when conditions then become unfavourable to the original lidar pipeline. In this paper, we test the method on a wider range of conditions, such as from a moving vehicle, and with multiple people present. Additionally, we also compare how the traditional SVM performs interpreting the radar data versus a modern deep neural network on these experiments. Our experiments indicate that either of the approaches results in progressive improvement in the performance during normal operation. Further, our experiments indicate that in the event of the loss of information from a sensor, pedestrian detection and position estimation is still effective.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Robotics and Autonomous Systems
ISSN
0921-8890
e-ISSN
1872-793X
Svazek periodika
136
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000609453100002
EID výsledku v databázi Scopus
2-s2.0-85096678939