Potentials of Learning Entropy for Sub-Nyquist and Sub-Noise Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133720" target="_blank" >RIV/63839172:_____/24:10133720 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/24:43909518
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10805128" target="_blank" >https://ieeexplore.ieee.org/document/10805128</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potentials of Learning Entropy for Sub-Nyquist and Sub-Noise Anomaly Detection
Popis výsledku v původním jazyce
Recently, we have noted the intriguing ability of Learning Entropy (LE) with Higher-Order Neural Units (HONUs) to detect abrupt frequency changes in both sub-Nyquist signals and pure noise signals. The concept of the LE and its fundamental element, the Learning Information (LI), is revised and extended. The LI is presented as the logical counterpart of Shannon's probabilistic information and the LE as its aggregation, e.g. as an average. The approach emphasizes the computational efficiency and analyzability of HONUs with gradient learning, which implies minimal computational and energy requirements for real-time computations. For pure noise, we show that bandpass filtering and principal components improve LE performance to immediately detect frequency changes below the noise level. By demonstrating the ability of LE with linear units to detect anomalies in undersampled signals and also in pure noise, we show the potential of LE for industrial applications and perhaps also for research related to future digital communication systems or advanced analysis of data from distributed sensors in optical transmission infrastructures.
Název v anglickém jazyce
Potentials of Learning Entropy for Sub-Nyquist and Sub-Noise Anomaly Detection
Popis výsledku anglicky
Recently, we have noted the intriguing ability of Learning Entropy (LE) with Higher-Order Neural Units (HONUs) to detect abrupt frequency changes in both sub-Nyquist signals and pure noise signals. The concept of the LE and its fundamental element, the Learning Information (LI), is revised and extended. The LI is presented as the logical counterpart of Shannon's probabilistic information and the LE as its aggregation, e.g. as an average. The approach emphasizes the computational efficiency and analyzability of HONUs with gradient learning, which implies minimal computational and energy requirements for real-time computations. For pure noise, we show that bandpass filtering and principal components improve LE performance to immediately detect frequency changes below the noise level. By demonstrating the ability of LE with linear units to detect anomalies in undersampled signals and also in pure noise, we show the potential of LE for industrial applications and perhaps also for research related to future digital communication systems or advanced analysis of data from distributed sensors in optical transmission infrastructures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023054" target="_blank" >LM2023054: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 SICE Festival with Annual Conference, SICE FES 2024
ISBN
978-4-907764-83-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
584-590
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
NEW YORK, USA
Místo konání akce
Kochi City, Japonsko
Datum konání akce
27. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001424958800050