Framework for discrete-time model reference adaptive control of weakly nonlinear systems with HONUs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00331936" target="_blank" >RIV/68407700:21220/19:00331936 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-16469-0_13" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-16469-0_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-16469-0_13" target="_blank" >10.1007/978-3-030-16469-0_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Framework for discrete-time model reference adaptive control of weakly nonlinear systems with HONUs
Popis výsledku v původním jazyce
This paper reviews the Higher Order Nonlinear Units (HONUs) and their fundamental supervised sample-by-sample and batch learning algorithms for data-driven controller learning when only measured data are known about the plant. We recall recently introduced conjugate gradient batch learning for weakly nonlinear plant identification with HONUs and we compare its performance to classical Levenberg-Marquard (LM). Further, we recall recursive least square (RLS) adaptation and compare its performance to L-M learning both for plant approximation and controller tuning. Further, a model reference adaptive control (MRAC) strategy with efficient controller learning for linear and weakly nonlinear plants is proposed with static HONUs that avoids recurrent computations, and its potentials and limitations with respect to plant nonlinearity are discussed. Recently developed stability approach for recurrent HONUs and for closed control loops with linear plant and nonlinear (HONU) controller is recalled and discussed in connotation stability of the adaptive closed control loop.
Název v anglickém jazyce
Framework for discrete-time model reference adaptive control of weakly nonlinear systems with HONUs
Popis výsledku anglicky
This paper reviews the Higher Order Nonlinear Units (HONUs) and their fundamental supervised sample-by-sample and batch learning algorithms for data-driven controller learning when only measured data are known about the plant. We recall recently introduced conjugate gradient batch learning for weakly nonlinear plant identification with HONUs and we compare its performance to classical Levenberg-Marquard (LM). Further, we recall recursive least square (RLS) adaptation and compare its performance to L-M learning both for plant approximation and controller tuning. Further, a model reference adaptive control (MRAC) strategy with efficient controller learning for linear and weakly nonlinear plants is proposed with static HONUs that avoids recurrent computations, and its potentials and limitations with respect to plant nonlinearity are discussed. Recently developed stability approach for recurrent HONUs and for closed control loops with linear plant and nonlinear (HONU) controller is recalled and discussed in connotation stability of the adaptive closed control loop.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
9th International Joint Conference, IJCCI 2017 Funchal-Madeira, Portugal, November 1-3, 2017 Revised Selected Papers
ISBN
978-3-030-16468-3
ISSN
1860-949X
e-ISSN
—
Počet stran výsledku
24
Strana od-do
239-262
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Funchal
Datum konání akce
1. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000502373700013