Introduction and Application Aspects of Machine Learning for Model Reference Adaptive Control With Polynomial Neurons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00333452" target="_blank" >RIV/68407700:21220/19:00333452 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.igi-global.com/chapter/introduction-and-application-aspects-of-machine-learning-for-model-reference-adaptive-control-with-polynomial-neurons/238139" target="_blank" >https://www.igi-global.com/chapter/introduction-and-application-aspects-of-machine-learning-for-model-reference-adaptive-control-with-polynomial-neurons/238139</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-7998-0301-0.ch004" target="_blank" >10.4018/978-1-7998-0301-0.ch004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Introduction and Application Aspects of Machine Learning for Model Reference Adaptive Control With Polynomial Neurons
Popis výsledku v původním jazyce
This chapter recalls the nonlinear polynomial neurons and their incremental and batch learning algorithms for both plant identification and neuro-controller adaptation. Authors explain and demonstrate the use of feed-forward as well as recurrent polynomial neurons for system approximation and control via fundamental, though for practice efficient machine learning algorithms such as Ridge Regression, Levenberg-Marquardt, and Conjugate Gradients, authors also discuss the use of novel optimizers such as ADAM and BFGS. Incremental gradient descent and RLS algorithms for plant identification and control are explained and demonstrated. Also, novel BIBS stability for recurrent HONUs and for closed control loops with linear plant and nonlinear (HONU) controller is discussed and demonstrated.
Název v anglickém jazyce
Introduction and Application Aspects of Machine Learning for Model Reference Adaptive Control With Polynomial Neurons
Popis výsledku anglicky
This chapter recalls the nonlinear polynomial neurons and their incremental and batch learning algorithms for both plant identification and neuro-controller adaptation. Authors explain and demonstrate the use of feed-forward as well as recurrent polynomial neurons for system approximation and control via fundamental, though for practice efficient machine learning algorithms such as Ridge Regression, Levenberg-Marquardt, and Conjugate Gradients, authors also discuss the use of novel optimizers such as ADAM and BFGS. Incremental gradient descent and RLS algorithms for plant identification and control are explained and demonstrated. Also, novel BIBS stability for recurrent HONUs and for closed control loops with linear plant and nonlinear (HONU) controller is discussed and demonstrated.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů