HONU and Supervised Learning Algorithms in Adaptive Feedback Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305518" target="_blank" >RIV/68407700:21220/16:00305518 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.igi-global.com/chapter/honu-and-supervised-learning-algorithms-in-adaptive-feedback-control/152096" target="_blank" >http://www.igi-global.com/chapter/honu-and-supervised-learning-algorithms-in-adaptive-feedback-control/152096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-0063-6.ch002" target="_blank" >10.4018/978-1-5225-0063-6.ch002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HONU and Supervised Learning Algorithms in Adaptive Feedback Control
Popis výsledku v původním jazyce
This chapter is a summarizing study of Higher Order Neural Units featuring the most common learning algorithms for identification and adaptive control of most typical representatives of plants of single-input single-output (SISO) nature in the control engineering field. In particular, the linear neural unit (LNU, i.e., 1st order HONU), quadratic neural unit (QNU, i.e. 2nd order HONU), and cubic neural unit (CNU, i.e. 3rd order HONU) will be shown as adaptive feedback controllers of typical models of linear plants in control including identification and control of plants with input time delays. The investigated and compared learning algorithms for HONU will be the step-by-step Gradient Descent adaptation with the study of known modifications of learning rate for improved convergence, the batch Levenberg-Marquardt algorithm, and the Resilient Back-Propagation algorithm. The theoretical achievements will be summarized and discussed as regards their usability and the real issues of control engineering tasks.
Název v anglickém jazyce
HONU and Supervised Learning Algorithms in Adaptive Feedback Control
Popis výsledku anglicky
This chapter is a summarizing study of Higher Order Neural Units featuring the most common learning algorithms for identification and adaptive control of most typical representatives of plants of single-input single-output (SISO) nature in the control engineering field. In particular, the linear neural unit (LNU, i.e., 1st order HONU), quadratic neural unit (QNU, i.e. 2nd order HONU), and cubic neural unit (CNU, i.e. 3rd order HONU) will be shown as adaptive feedback controllers of typical models of linear plants in control including identification and control of plants with input time delays. The investigated and compared learning algorithms for HONU will be the step-by-step Gradient Descent adaptation with the study of known modifications of learning rate for improved convergence, the batch Levenberg-Marquardt algorithm, and the Resilient Back-Propagation algorithm. The theoretical achievements will be summarized and discussed as regards their usability and the real issues of control engineering tasks.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů