Novelty Detection in System Monitoring and Control with HONU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305519" target="_blank" >RIV/68407700:21220/16:00305519 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.igi-global.com/chapter/novelty-detection-in-system-monitoring-and-control-with-honu/152097" target="_blank" >http://www.igi-global.com/chapter/novelty-detection-in-system-monitoring-and-control-with-honu/152097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-0063-6.ch003" target="_blank" >10.4018/978-1-5225-0063-6.ch003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novelty Detection in System Monitoring and Control with HONU
Popis výsledku v původním jazyce
With focus on Higher Order Neural Units (HONUs), this chapter reviews two recently introduced adaptive novelty detection algorithms based on supervised learning of HONU with extension to adaptive monitoring of existing control loops. Further, the chapter also introduces a novel approach for novelty detection via local model monitoring with Self-organizing Map (SOM) and HONU. Further, it is discussed how these principles can be used to distinguish between external and internal perturbations of identified plant or control loops. The simulation result will demonstrates the potentials of the algorithms for single-input plants as well as for some representative of multiple-input plants and for the improvement of their control.
Název v anglickém jazyce
Novelty Detection in System Monitoring and Control with HONU
Popis výsledku anglicky
With focus on Higher Order Neural Units (HONUs), this chapter reviews two recently introduced adaptive novelty detection algorithms based on supervised learning of HONU with extension to adaptive monitoring of existing control loops. Further, the chapter also introduces a novel approach for novelty detection via local model monitoring with Self-organizing Map (SOM) and HONU. Further, it is discussed how these principles can be used to distinguish between external and internal perturbations of identified plant or control loops. The simulation result will demonstrates the potentials of the algorithms for single-input plants as well as for some representative of multiple-input plants and for the improvement of their control.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů