Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neřízená segmentace textur používající strategii vícenásobných segmenterů

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00083068" target="_blank" >RIV/67985556:_____/07:00083068 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31160/07:00027049

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Texture Segmentation Using Multiple Segmenters Strategy

  • Popis výsledku v původním jazyce

    A novel unsupervised multi-spectral multiple-segmenter texture segmentation method with unknown number of classes is presented. The unsupervised segmenter is based on a combination of several unsupervised segmentation results, each in different resolution, using the sum rule. Multi-spectral texture mosaics are locally represented by four causal multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.

  • Název v anglickém jazyce

    Unsupervised Texture Segmentation Using Multiple Segmenters Strategy

  • Popis výsledku anglicky

    A novel unsupervised multi-spectral multiple-segmenter texture segmentation method with unknown number of classes is presented. The unsupervised segmenter is based on a combination of several unsupervised segmentation results, each in different resolution, using the sum rule. Multi-spectral texture mosaics are locally represented by four causal multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached. The performance of the presented method is extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2007

  • Číslo periodika v rámci svazku

    4472

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

    210-219

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus