Grafoví a algebraičtí reprezentanti modelů podmíněné nezávislosti
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00085219" target="_blank" >RIV/67985556:_____/07:00085219 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graphical and Algebraic Representatives of Conditional Independence Models
Popis výsledku v původním jazyce
The topic of this book chapter is conditional independence models. We review mathematical objects that are used to generate conditional independence models in the area of probabilistic reasoning. More specifically, we mention undirected graphs, acyclic directed graphs, chain graphs, and an alternative algebraic approach that uses certain integer-valued vectors, named imsets. We compare the expressive power of these objects and discuss the problem of their uniqueness. In learning Bayesian networks one meets the problem of non-unique graphical description of the respective statistical model. One way to avoid this problem is to use special chain graphs, named essential graphs. An alternative algebraic approach uses certain imsets, named standard imsets, instead. We present algorithms that make it possible to transform graphical representatives into algebraic ones and conversely. The algorithms were implemented in the R language.
Název v anglickém jazyce
Graphical and Algebraic Representatives of Conditional Independence Models
Popis výsledku anglicky
The topic of this book chapter is conditional independence models. We review mathematical objects that are used to generate conditional independence models in the area of probabilistic reasoning. More specifically, we mention undirected graphs, acyclic directed graphs, chain graphs, and an alternative algebraic approach that uses certain integer-valued vectors, named imsets. We compare the expressive power of these objects and discuss the problem of their uniqueness. In learning Bayesian networks one meets the problem of non-unique graphical description of the respective statistical model. One way to avoid this problem is to use special chain graphs, named essential graphs. An alternative algebraic approach uses certain imsets, named standard imsets, instead. We present algorithms that make it possible to transform graphical representatives into algebraic ones and conversely. The algorithms were implemented in the R language.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F04%2F0393" target="_blank" >GA201/04/0393: Struktury podmíněné nezávislosti: informačně-teoretický přístup III.</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Probabilistic Graphical Models
ISBN
978-3-540-68994-2
Počet stran výsledku
26
Strana od-do
55-80
Počet stran knihy
—
Název nakladatele
Springer Verlag
Místo vydání
Berlin Heildeberg
Kód UT WoS kapitoly
—