Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adhesivita polymatroidov

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00098117" target="_blank" >RIV/67985556:_____/07:00098117 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adhesivity of polymatroids

  • Popis výsledku v původním jazyce

    Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroidson a four-element set are characterized by Zhang-Yeung inequalities.

  • Název v anglickém jazyce

    Adhesivity of polymatroids

  • Popis výsledku anglicky

    Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroidson a four-element set are characterized by Zhang-Yeung inequalities.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100750603" target="_blank" >IAA100750603: Informační geometrie mnohorozměrných modelů statistiky a umělé inteligence.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Svazek periodika

    307

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    2464-2477

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus