Adhesivita polymatroidov
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00098117" target="_blank" >RIV/67985556:_____/07:00098117 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adhesivity of polymatroids
Popis výsledku v původním jazyce
Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroidson a four-element set are characterized by Zhang-Yeung inequalities.
Název v anglickém jazyce
Adhesivity of polymatroids
Popis výsledku anglicky
Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroidson a four-element set are characterized by Zhang-Yeung inequalities.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100750603" target="_blank" >IAA100750603: Informační geometrie mnohorozměrných modelů statistiky a umělé inteligence.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
307
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
2464-2477
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—