A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00306560" target="_blank" >RIV/67985556:_____/08:00306560 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix
Popis výsledku v původním jazyce
We propose a new algorithm for Approximate Joint Diagonalization (AJD) with two main advantages over existing state-of-the-art algorithms: Improved overall running speed, especially in large-scale (high-dimensional) problems; and an ability to incorporate specially structured weight-matrices into the AJD criterion. The algorithm is based on approximate Gauss iterations for successive reduction of a weighted Least Squares off-diagonality criterion. The proposed Matlab implementation allows AJD of ten 100x100 matrices in 3-4 seconds (for the unweighted case) on a common PC (Pentium M, 1.86GHz, 2GB RAM), generally 3-5 times faster than the fastest competitor. The ability to incorporate weights allows fast large-scale realization of optimized versions of classical blind source separation algorithms, such as Second-Order Blind Identification (SOBI), whose weighted version (WASOBI) yields significantly improved separation performance.
Název v anglickém jazyce
A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix
Popis výsledku anglicky
We propose a new algorithm for Approximate Joint Diagonalization (AJD) with two main advantages over existing state-of-the-art algorithms: Improved overall running speed, especially in large-scale (high-dimensional) problems; and an ability to incorporate specially structured weight-matrices into the AJD criterion. The algorithm is based on approximate Gauss iterations for successive reduction of a weighted Least Squares off-diagonality criterion. The proposed Matlab implementation allows AJD of ten 100x100 matrices in 3-4 seconds (for the unweighted case) on a common PC (Pentium M, 1.86GHz, 2GB RAM), generally 3-5 times faster than the fastest competitor. The ability to incorporate weights allows fast large-scale realization of optimized versions of classical blind source separation algorithms, such as Second-Order Blind Identification (SOBI), whose weighted version (WASOBI) yields significantly improved separation performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0572" target="_blank" >1M0572: Data, algoritmy, rozhodování</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICASSP 2008: IEEE International Conference on Acoustics, Speech, and Signal Processing
ISBN
978-1-4244-1483-3
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
Conference Management Services
Místo vydání
Bryan
Místo konání akce
Las Vegas
Datum konání akce
30. 3. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—