Non-orthogonal tensor diagonalization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00474387" target="_blank" >RIV/67985556:_____/17:00474387 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.sigpro.2017.04.001" target="_blank" >http://dx.doi.org/10.1016/j.sigpro.2017.04.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2017.04.001" target="_blank" >10.1016/j.sigpro.2017.04.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-orthogonal tensor diagonalization
Popis výsledku v původním jazyce
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions ofnthe tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetricndiagonalization of an order-three tensor, (2) a similar algorithm for a non-symmetric AJD, also called a two-sided diagonalization of an order-three tensor, and (3) an algorithm for three-sidedndiagonalization of order-three or order-four tensors. The latter two algorithms may serve for canonical polyadic (CP) tensor decomposition, and in certain scenarios they can outperformntraditional CP decomposition methods. Finally, we propose (4) similar algorithms for tensor block diagonalization, which is related to tensor block-term decomposition. The proposed algorithmncan either outperform the existing block-term decomposition algorithms, or produce good initial points for their application.
Název v anglickém jazyce
Non-orthogonal tensor diagonalization
Popis výsledku anglicky
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions ofnthe tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetricndiagonalization of an order-three tensor, (2) a similar algorithm for a non-symmetric AJD, also called a two-sided diagonalization of an order-three tensor, and (3) an algorithm for three-sidedndiagonalization of order-three or order-four tensors. The latter two algorithms may serve for canonical polyadic (CP) tensor decomposition, and in certain scenarios they can outperformntraditional CP decomposition methods. Finally, we propose (4) similar algorithms for tensor block diagonalization, which is related to tensor block-term decomposition. The proposed algorithmncan either outperform the existing block-term decomposition algorithms, or produce good initial points for their application.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal Processing
ISSN
0165-1684
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
313-320
Kód UT WoS článku
000401043400032
EID výsledku v databázi Scopus
2-s2.0-85017217771